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FOREWORD

The 21st Conferenci'on the'bostgn of Experiments in Army Research,
Development and Testing was held 22-24 October 1975 in Washington, DC.
The Conference, which took place at the W4ater Reed Medical Complex, had
two hosts: the Walter Reed Army Medical Center and the Armed Forces
Institute of Pathology. Both hosts furnished excellent conference rooms
and meeting rooms for this symposium. Planning for these meetings re-
quires painstaking attention to detail and we are indebted to Dr. Walter
D. Foster and Dr. James N. Young; both of the Armed Forces Institute of
Pathology, for serving well as Chairmen for Local Arrangments. We are
pleased that Major General Robert Bernstein, Commander of the Walter Reed
Army Medical Center, opened the Conference and welcomed us. This is not
the first meeting t& be held at the Walter Reed installation. On each
occasion, the reception given us has been excellent, and we look forward
to meetings there again in the future,

There were four addresses by invited speakers. Traditionally an
attempt is made by the Program Committee to have expository talks on
themes somewhat pertinent to the mission of the Army installation at
which the annual conference is held. Success along these lines was
achieved again. The first address was given by Frederick Mosteller of
Harvard University, who spoke on "Success in Social and Medical Experi-
mentation." Dr. Mosteller was given, at his request, two hours to de-
liver his address. Normally, there would have been five invited addresses,
but the length of Professor Mosteller's talk led to four at this meeting.
Dr. Mosteller's talk was given at the first morning of the Conference
and was followed in the late afternoon by two papers on clinical trials.
There has been much in the medicAl and statistical literature on this
topic. Professor Edmund A. Gehan of the University of Texas System
Cancer Center spoke un "Non-randomied Clinical Trials" and Professor
Paul Meier of the University of Chicago addressed the audience on
"Randomized Clinical Trials." On the second day cf the Conference,
Professor Seymour Geisser of the University of Minnesota gave an in-
vited address on "Predictive Sample Reuse." This was followed on the
morning of the last day of the Conference by a talk on "Normality and
Disease" given by Professor Edmond A. Murphy of the Johrs Hopkins
Medical School.

One major purpose of the Conference is to bring together those
engaged in scientific work in Army installations with investigators
from other government agencies and those from university life. This
interaction has been going on successfully since the inception of the
program. Statisticians and others in Amy installations discuss their
work at technical sessions and clinical sessions at each annual con-
ference. For this Conference there were seven technical sessions com-
prising 24 papers and four clinical sessions. At the clinical sessions
a panel of experts responds to problems raised by those in Army instal-
lations who have usually given advance manuscript copies to the panelists.
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Besides the technical aspects, these session; provide a source for
initiating future collabor-ktion between scientists in Army installa-
tions and those In university life.

At the start of thi.s year's opening session, Dr. Walter D. Foster
was honored with a Certificate for Achievement for the valuable con-
tributions he made during his twilve yoars as Chaitman of the Probab1lity
and Statistics Subcommittee of the Army Mathematics Steering Committee.
tV& was specifically cited for "continuously and vigorously crusading
for application of sound statistical principles and methodology to
problems in Army research and development."

On the evening of the first day of the Conference, a banquet is
held at which the Samuel S. Wllks Memorial Award of the American
Statistical Association and the Department of the Army is presented.
At this meeting the 11th award was presented by Lester Frankel, Presi-
dent of the ASA, to Dr. Herbert Solomon, Professor of Statistics, Stan-
ford University. The award was made to Dr. Solomon for his significant
contributions to statistical methodology and for his outstanding contri-
butions in the application of statistics In the service of the nation.

The Army Mathematics Steering Committee sponsors these meetings on
behalf of the Office of the Chief of Research and Development and Act-
quisition to bring new developments in statistics to Amy scientists
and engineers and to expose them to thinking that could be profitable
to them in the execution of their missions. The Committee has asked
that the proceedings of the Conference be published and issued Army-
wide and to other scientific conmunities.

At the beginning of each calendar year the program committee for
these conferences is selected and meets in Washington, DC, to suggest
areas of interest, to outline a program, and to suggest speakers for
the meeting to be held later that year. I would like to express my

* appreciation to Dr. Frank Grubbs, Program Chairman for this year's
committee, and to Dr. Douglas Tang, Chairman of the Subcommittee on
Probability and Statistics, Army Mathematics Steering Committee, for
their efforts and great help. My thanks also go to other committee
members involved in developing this year's program: Drs. David W.
Alling, Gary A. Chase, Walter D. Foster, Bernard Harris, J. Stuart
Hunter, Clifford J. Maloney, Badrig Kurkjian, Marvin Schneiderman.
Francis Dressel, as always, was helpful in many ways in making sure
the program was a success. Thus many hands helped in guiding this
Conference to a successful conclusion, and this is very much appre-
ciated.

Herbert Solomon
Conference Chairman
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72M TWA2-FIRST CONERENCE ON THE 1SIGK OF ECRZRIMNTS

II AfU RESEARCH, D•VELOPMEIT AND TESTING

22-24i October 197T

The Armed Forces Institute of Pathology

*0e0 Wednesday, 22 October 000e*

0830-0930 REGISTRATION -- Lobby of Sternberg Auditorium (WRAIR)

0930-1220 GERAL SESSION I - Sternberg Auditorium

CALLING OF CONFEPRECE TO ORDER

Dr. Walter D. Foster, Chairman on Local Arrangements, Armed
Forces Institute of Patholog, Washington, D. C.

WELCOMING REMARKS

Major Jeneral Robert Berstein. Commander, WRAMC

CHAIRMAN OF SESSION I

Dr. Frank E. Grubbs, Program Committee Chairm'n, Aberdeen
Proving Ground, Maryland

SUCCESS IN SOCIAL AND MEDICAL EXPERIMENTATION

Professor Frederick Mosteller, Department of Statistics,
Harvard University, Cambridge, Massachusetts

* 1050-1120 BREAK

1120-1220 GEERAL SESSION I (CONTINUED)

k SECOND PART OF 'TE ADDRESS BY PROFESSOR MOSTELLER

1220-1320 LUNCH -- Officers' Open Mess, WRAMC

vii



SWednesday **

1320-1i30 CLINICAL SSION A -- Dart Auditorium (AFnr)

Boyd Rarshbarger, Department of Statistics, Virginia Polytecbnic
Institute and State University, Blacksburg, Virginia

PAU3LISTS

Robert Bechhoter, Department of Operations Research, Cornell
University, Ithaca, New York

Joseph M. Cameron, Statistical Engineering Laboratory, National
Bureau of Standards, Wahsington, D. C.

A. Clifford Cohen, Institute of Statistics, University of
Georgia, Athens, Georgia

J. Richard Moore, U.S. Arny Ballistics Research Laboratories
Aberdeen Proving Ground, Maryland

INVESTIGATIONS OF INTERFACE BETWEEN 5. 56mm BULLETS AND RIFLING+"- ~CONPIGURATIONS 5

Dennis Conway, Munitions Development and Engineering Directorate,
Frankford Arsenal, Philadelphia, Pennsylvania

A STEP TOWARD THE RATIONAL DESIGN OF EXPERIMENTS IN METAL-
FORMING TECHNOLOGY

Paul OordorL, Materials Engineering Division, Pitman-D=nn
Laboratory, Frankford Arsenal, Philadelphia, Pennsylvania

1320-14 30 TECHNICAL SESSION 1 -- Oven Conference Room (AFIP)

CHAIRMAN

Lan& Withers, U.S. Army Operational Test and Evaluation Agency,
Fort Belvoir, Virginia

DESIG OF.EXPERIMENTS DEALING WITH MAN-MACHINE INTERFACE IN
CURRENT COMMUNICATIONS SYSTEMS

R. J. D'Accardi, H. S. Bennett, U. S. Army Electronics Command,
Fort Monmouth, New Jersey

J. R. Hennessy, U.S. ARMY MERDC, Fort Belvoir, Virginia

PLANNING FOR THE MEASUREMENT OF FLIG1T TRAJECTORY

J. B. Gose and J. V. Carrillo, Quality Assurance office
U.S. Army White Sands Missile Range, White Sands, New Mexico
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* - e Wednesday *****

11430-1500 BREAK

1500-1710 GENERAL SESSION II -- Sternberg Auditorium (WRAIR)

CZAIBMAN

Dr. Mar'vin A. Schneiderm a, National Cancer Institute, Bethesdb,
Maryland

- I

NONRANDOMIZED CLINICAL TRIALS

Professor Edmund A. Gehan, Department of Biomathematios,
University of Texas System Cancer Center, Houston, Texas

RANDOMIZED CLINICAL TRIALS

Professor Paul Meier, Department of Statistior, The University
of Chicago, Chicago, 111inois

1830-1915 SOCIAL GATHERING -- Officers' Open Mess, WRAMC

1915- BANQUET

PRESENTATION OF THE SAMUEL S. WILKS MMRIAL AWARD

Dr. Frank E. Grubbs, Muter of Ceremonies

****5 Thursday, 23 October *****

0830-1010 CLINICAL SESSION B -- Dart Auditorium (APIP)

CHAIRMAN

Badrig Kurkjian, U.S. Army Materiel Command, Alexandria, Virginia

PANELISTS

Robert Bechhofer, Department of Operations Research, Cornell
University, Ithaca, New York

Seymour Geisser, School of Statistics, University of Minnesota,
Minneapolis, Minnesota

J. Richard Moore, U.S. Arnm Ballistics Research Laboratories,

Aberdeen Proving Ground, Maryland

I ! Richard L. Moore, U.S. Army Armament Command, Rock Island, Illinois

ix
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*1eo* Thursday see*0

CLINIQAL SESSION B (CONTINUED)

EMPIRICAL COMPARISON OF CRITERION-REFERENCED MEASUREMENT
ODELS

rrederick H. Steinheiser, Jr. and Kenneth I. Epstein, U.S. Army
Research Institute for the Behavioral and Social Soiences,
Arlington, Virginia

PRESSUEE IMPULSE METHODOLOGY

Barry H. Rodin, Concepts Analysis Laboratory, Ballistic
Research Laboratory, Aberdeen Proving Ground, Maryland

0830-1010 TECHNICAL SESSION 2 -- Owen Conference Hoom (AFIP)

CHAIRMAN

Douglas B. Tang, Department of Biostatistics/Applied Mathematics,
Division of Biometrics and Medical Information Processing, Walter
Reed Army Institute of Research, Washington, D. C.

NONRANDOMIZED FACTORIAL DESIGNS CHARACTERIZED BY TREND
ELIMINATION AND A MINIMUM NUMBER OF FACTOR T..VEL CHANGES

Les Lancaster and Steve Reynolds, U.S. Army Operational
Test and Evaluation Agency, Fort Belvoir, Virginia

A METHOD OF ESTIMATING ERROR VARIANCE IN A NON-REPLICATED
EXPERIMENT BY PARTITIONING AN INTERACTION TEXM INTO NON-
ADDITIVITY AND ERROR

Lieutenant L. Douglas Peirce, Army Logistics Management
Center, School of Logistics Science, Systems and Cost Analysis
Department, Fort Lee, Virginia

PLANNING QUANTAL RESPONSE TESTS FOR ORDANCE DEVICES: THE
TWO-POINT STRATEGY AND ANALYSIS

,R. E. Little, The University of Michigan-Dearborn, School
-t of Engineering, Dee.rborn, ML.higan
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**e* Thursdqr ****o

0830-1010 TECHIICAL SESSION 3 -- Carroll Auditorium

CKAIRWA

higeee F. Dutoit, U.S. VW Infantry School, Directortate of
Combav Developments, Fort Benning, Georgia

APPLICATIONS OF THE MOMTE CARLO TECHNIQUE TO DETERMINE STATISTICAL
STRESS AND STRAIN RESPONSE AROUND CUT-OUTS IN COMPOSITES

Donald M. Neal, Arq- Materials and Mechanics Research Center,
Watertown, Musbachuuzetts

TECHFIQ=E FOR STATISTICALLY ZETERMINING FLIGHT SUITABILITY OF
Al ARTILLARY PROJECTILE

Gertrude Weintraub and Ronald Corn, Pic&tu•7y Arsenal, Dover,
New Jersey

BAYESIAN SYSTEM RELIABILITY GROWTH ANALYSIS USING SUBSYSTEM DATA -.

"John G. Mardo, Picatinny Arsenal, Dover, New Jersey

1010-1040 BREAK

10o40-1220 CLINICAL SESSION C -- Dart Auditorium (AFIP)

R. J. D'Accardi, U.S. Arni Electronics Command, Fort Mc,'.rjuth
New Jersey

PANELISTS

A. Clifford Cohen, Institute of Statistics, University of
Georgia, Athens, Georgia

Larry H. Crow, U.S. Army Materiel Systems Analysis Agency,
Aberdeen Proving Ground, Maryland

Bernard Harris, Mathematics Research Center, University of
Wisconsin, Madison, Wisconsin

Herbert Solomon, Department of Statistics, Stanford University
Stanford, California
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M110AL =sszK c (COvTIN=D) I
APPLICATION OF LIFS TESTING TECNIQUES TO n1TZCTIOK DATA

Carl B. •atet, U.S. Arow Concepts Analysis Agency, Bethesda,
Maryland

7I2T JXBI CONSIDRATIOfS IN COMOUGLAOE OF THE M60A1 TANK I

NMAJ William K. Emerson, USAMERDC, R&D Coordinator, FortBelvotr, Virginia

1040-1220 TECHICAL SESSTON ) Oven Conference Room (AFIP)

CHAIMA"

Robert Burge, Department of Biostatistics/Applied Mathematics 4
Division ort Biometrics and Medical Information Processing,
Walter Reed Army Institute of Research, Washingtor, D. C.

ON THE ROBUSTNESS OF THE EXPOTENTIAL DISTRIBUZION

George C. Canavos, School of Business, Virginia Commonwealth
Untiverslty, Richmond, Virginia

RANDOM INTERVAL RELIABILITY "

Gerald R. Andersen, Office AMC Chief Mathematician, HQ, U.S.
ArsW Materiel Command, Alexandria, Virginia

CONDFENcE INTERVALS FOR A SUM OF RENEWAL PROCESSES WITH
APPLICATION IN RELIABILITY

Ronald L. Racicot, Applied Math & Mechanics Division, Research
Directorate, Benet Weapons Laboratory, Watervliet Arsenal,
Wntervliet, New York

STRUCTURAL VARIANCE ESTIMATION

Clifford J. Maloney and Lucille Carver, Bureau of Biologics,
FDA, Rockville, Maryland

1220-1320 LUNCH -- Officers' Open Mess, WRAMC
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.05Tliursday ~*

1320-1520 CLINICAL SESSION D- Dart AucLitorium (AFIP)rCHAIRMANI - 1

Clifford J. Maloney, Bureau of Biologies, FDI, Bethesda, Maryland

PAXELISTS

Frank E. Grubbs, Aberdeen Proving Ground , Maryland

S r Bernard Harris, Mathematics Research Center, University of
Wisoonsin, Madison, Wisconsin

Richard L. Moore, U.S. Army Armament Command, Rook Island, IL

Herbert Eolc~mon, Department of Statistics, Stanfo2d University
Stanford, California

UNKNIOWN SIGNAL DETECTOR IN A MULTIPLE 0BJECT SITUATION

John Bart Wilburn, Jr., I&M Branch, U.S. ArmW Electronic
Proving Ground, Fort Huachuca, Arizona

OUTLIER DETECTION PROCEDURES IN TRAJECTORY DATA REDUCTION

William S. Age* and Robert H. Turner, Analysis and Computation
Division, National Range Operations Directorate, U.S. Army
White Sands Missile Range, White Sands, New Mexico

S1320-1520 TECHNICAL SESSION 5 - Oven Conference Room (AFIP)

CHAIRMAN

Ian McLean, Armed Forces Institute of Pathology, Washington, D. C.

APPLYING SIMULATION OF PHYSIOLOGICAL SYSTEMS TO THE DESIGN OF
EXPERIMENTS: EXAMPLES OF ENDOCRXNE AND RESPIRATORY FUNCTIONS
Stanley M. Finkelstein, Division of Biological Engineering

a.nd Department of Operations Research and System Analysis,

Polytechnical Institute of Ne-," York, Brooklyn, Nev York

Stanley S. Reisman, Department of Electrical Engineering,
New Jersey Institute of Technology, Newark, Now Jersey

A DESIGN FOR TaE DETECTION OF SYNERGY IN DRUG MIXTURES

P. V. Piaerchia and B. V. Shah, St.atistics Research Division,
Research Triangle Institute, Research Triangle Park, North Carolina
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0."" Thursday "***"

r TECNICAL SESSION 5 (CONTINUED)

A NEW SAMPLING RULE FOR SEQUENTIAL BINOMIAL CLINICAL TRIALSI lR. Brinivasan, Department of Mathematei, Temple University,
Phildelphiia, Pennsylvania

1520-1550 BfEZAIC

1550-1700 GENERAL SESSION III -- Dart Auditorium (AFIP)

CHAIRMAN
Professor J. Stuart Hunter, Committee on National Statistics,
National Academy of Sciences, Washington, D. C.

PREDICTIVE SAMPLE REUSE

Professor Seymour Geisser, School of Statistics, University
of Minnesota, Minneapolis, Midnesota,

em~w Fridaer, 24 October ***m*

0830-1020 TECHNICAL SESSION 6 -- Dart Auditorium (AFIP)

CIARMAN

Joseph Rothberg, Division of Neuropsychiatry, Walter Reed
Army Institute of Research, Washington, D. C.

VAIROUS METHODOLOGICAL APPROACHES TO PEER EVALUATIONS

Ronald G. Downey and Paul J. Duffy, U.S. Army Research Institute
for Behavioral and Social Sciences, Arlington, Virginia

OBJECTIVE ANALYSIS OF CAMOUFLAGE VIA IMAGE INTERPRETERS

Ronald Johnson, USAMERDC, Countersurveillance and Topogr•aphic.

Division, Fort Belvoir, Virginia

NATO JOINT FIELD TRIAL ON AIR DEFENSE SITE CAMOUFLAGE

Allan T. Sylvester II, 'JSAMERDC, Countersurveillance and
Topographic Division, Fort Belvoir, Virginia

Xlv
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F00 riday *0

0830-1020 TECHNICAL ESSIQ 7 -7 Oven Conference Room (APIP)

Beatrice S. Orleans, Naval Ships System Command, Washington, D. C.
A SIMPLE NEMOD FOR ETERMINING THE UNRESTRICTSD AVERLGE 0UTDOING
QUALITY LIMIT (UAOQL) OF A CONTINUOUS SAMPLING PLAN

Ricbard K. Brugger, RAM Assessment Division, ProdUct Assurance
Directorate, U.S. Army Arnment Command, Rock Island, Illinois

S MA.NCOV CHAINS APPLIED TO I 0ARKV CHAIN PUNCTIONALS PARTIALLY
DEPENDENT ON RANDOM RETROGRADE TINE SHIPf8

David L. Arp, Naval Weapons Center, China Lake, California

PROGRESSIVELY CENSORED SAMPLING IN THE LOG-NORMAL DISTRIBUTION

A. Clifford Cohen, University of Georgia, Department of
Statistics and Computer Science, Athens, Georgia

1020-1050 BREAK

1050-1220 0IERAL SESSION IV -- Dart Auditorium (APIP)

CHAIRMAN

Professor Herbert Solomon, Chairman of the Conference, Department
of Statistics, Stanford University, Stanford, California

OPEN MEETING OF THE AMlC SUB-CONMITTEE ON PROBABILITY AND
STATISTICS

Dr. Douglas B. Tang, Department of Biostatistics and Applied
* , Mathematics Division, Biometrics and Med. Info. Proc., Walter

Reed Army Institute of Research,. Washington, D. C.

NORMALITY AND DISEASE

Professor Edmond A. Marphy, Professor of Medicine, The Johns
Hopkins Hospital, Baltimore, Ma"land

1220-1320 LUNCH -- Officers' Open Mess
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INVESTIGATIONS OF INTERFACE BETWEEN 5.56MM BULLETS
AND RIFLING CONFIGURATIONS

DENNIS J. CONWAY
MUNITIONS DEVELOPMENT & ENGINEERING DIRECTORATE

U.S. ARMY FRANKFORD ARSENAL
PHILADELPHIA, PA

Abstract. The interface between 5.56mm ball and tracer bullet
designs and various rifling configurations are examined to
determine the effects on ballistic performance and mechanical
integrity as would be experienced under general purposemachine gun operational modes.

Two modes of projectile failure are examined against
light machine-gun system design criteria. Based on these
results, optimum rifling configurations are identified for
use in a machine-gun system.

Verification of these optimized rifling designs through
experimentation are discussed.

1. Introduction. Init4.al interest in the study of those
parameters ezrecting barrel/bullet interface was generated
at Frankford Arsenal under the 6mm tracer program. At that
time, the 6mm-ball and tracer cartridges were the prime
ammunition candidates for the Squad Automatic Weapon (SAW),
and consequently great concern was expressed at a high
incidence of tracer projectile failures (break-up) then
being observed during both test barrel and weapon barrelperformance tests.

Table 1 categorizes various tracer projectile malfunctions
from four and six-groove, plated and unplated weapon and test
barrels. Th4.s chart shows the frequency of projectile failures
from four-groove plated weapon barrels and to a lesser degree
in four-groove plated test barrels.

As a result of this high incidence of projectile failure,
an analytic stress study was undertaken to examine certain
modes of failure which could explain the type of projectile
break-up being exhibited.

iI
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2. Stress Evaluation. Th typical 6mm tracer failure as
observed In reov-ered projectiles was evidenced by a radial
flaring of the projectile base and longitudinal separation
of the projectile jacket, an if the pyrotechnic column
exploded after muzzle exit.

The modes of projectile failure examined in the initial
stress study were:

a. The shear deformation or out-of-roundness occurring
in the projectile jacket.

b. The stress field encountered by the projectile
jacket after engraving and during acceleration of the projectile.

Shortly after the initiation of the stress study, DA
guidance was received eliminating the 6mm concept from
inclusion as a SAW contender. Developmental efforts were
redirected towards the consideration of a 5.56mm SAW
ammunition contender, which was easily included in the analytic
study. Shown in Table 2 are the pertinent projectile
characteristics for the 5.56mm concepts under development.
In selecting an ammunition design as a SAW contender, several
design criteria were applied to the analysis in order to
define the use of the projectile and weapon barrel in a light
machine-gun role. These design criteria are outlined in

* Table 3. In addition to these design parameters addressing
projectile integrity, any interior bore configuration must
satisfy other basic performance requirements such as projectile
accuracy, barrel life under machine-gun firing schedules,
interior ballistics, terminal effectiveness and high rate
manufacture by current methods.

The effect of shear deformation on the projectile integrity
was considered by applying thin-ring theory to the projectile
jacket with "n" distributed forces being applied corresponding
to the number of lands. The results of the analysis indicated
that during the engraving process it is desirous that the
pressure under the land be as large as possible for any given
deflection. The reason for this is that the engraving is
caused by the jacket material becoming plastic, and the smaller
the deflection that is encountered when the material goes
plastic, then the less out-of-roundness that will be incurred
by the jacket. When considering this result relative to the

3
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pressures and deflections induced by four and six-groove
barrels, the results clearly indicate that the six-groove
configuration is clearly superior to the four-groove even
when comparing a six-groove barrel with minimum land height
to a four-groove with a maximum land height.

The stress field developed on the jacket after engraving
and during acceleration was addressed by considering a
pressure gradient acting from the bottom to the top of the
engraved surface. By relating this pressure distribution
to the depth of engraving, minimum values of engraving depth
were calculated such that the probability of jacket shearing

Sis reduced. This minimum depth of engraving was shown to
* be .0017 in. for the four-groove barrel and .0011 in.for the

six-groove. These minimum engraving depths were applied to
* the analysis in determing optimum bore configurations.

Optimum Bore Dimensions and Proiectile Compatibility. When
considering the minimum engraving depths required together
with the pertinent design criteria and projectile dimensions,
it is possible to compute optimum rifling dimensions such that
the types of system failures considered will be minimized.
This was done for the projectiles being developed by relating
the minimum engraving depths required such that jacket shear
does not take place as a function of projectile diameter,
bore diameter, barrel temperature, jacket deformation due to
engraving and land wear. This relationship is shown in
equation 1-1.

(1-1) le - Rp- Rbo (1 + AT) -Wb - ULY

where, le - minimum engraving depth required
Rbo - bore radius or land radius
Rp - projectile radius

a coefficient of thermal expansion
AT - barrel temperature gradient under hot condition
Wb - barrel wear

ULy M jacket displacement before yielding

By solving equation 1-1 for Rbo, the land diameter suited
to each projectile design can be found. The optimum groove
size was derived such that the smallest projectile diameter
used in the bore will have the same diameter as the groove
at its highest temperature as shown in equation 1-2. This
would correspond to the barrel temperature reached under
sustained firing schedules.

6
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(1-2) DG- DP min , where DG - groove diameter
Dp - minimum projectile

diameter 2

a - coefficient of
thermal expansion

AT - barrel temperature
gradient

The optimum barrel dimensions calculated using equations
1-1 and 1-2 are showii in Table 4. Note that configurations
1 and 2 are optimum based on tracer projectiles of differing
diameters while configuration 3 considers an increased land
height for larger barrel wear over configurations 1 and 2.Standard 5.56mm barrel dimensions are shown as reference.

A numerical exercise was performed utilizing the optimum

rifling dimensions and projectile dimensions to demonstrate
the range of in-bore interferences and clearances possible
under "best" and "worst" design conditions. Table 5 summarizes
the results of this exercise giving a range of interference/
clearance values for both standard 5.56mm bore configuration and
optimized configurations. To properly compute these interference/
clearance values, the following parameters were considered:

a. minimum and maximum bullet diameters (ball and tracer)
b. minimum and maximum land and groove diameters
c. .0005 in. diametrical land weard. diametrical bore expansion at 1250 F

Table 6 lists the equations used to compute the ranges
of interference/clearance and minimum land height values.
In comparing the standard barrel designs with the optimized
cases, it is important to view these results in a strictly
statistical sense in that projectile deformation into the
barrel grooves was not considered. However, despite the
rather static condition under which these numbers were
generated, a major difference among designs can be noted.
In all cases, the optimized designs exhibit a greater
projectile/barrel interference, or lesser projectile/barrel
clearance than the standard barrel dimensions. This important
difference is the direct result of attempting to accommodate
differing ball and tracer projectile diameters while insuring
satisfactory system performance over a temperature range from

7
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ambient to 1250 F. These design parameters are further
aggravated by considering land wear.

Comparing the interferences and clearances shown in
Table 5 with the minimum required land engagement of .0011
in. for six-groove configurations shows possible problem
areas. Despite the fact that the minimum land heights under
worst conditions exceed this .0011 in. requirement, it is
not necessarily true that proper engraving will occur. This
situation occurs in the 5.56mm standard six-groove design,
for both ball and tsacer comparisons. Although the minimum
land height at 12507F is adequate for the required .0011 in.
engraving, this engraving cannot occur if the projectile/
land interferences run as low as .0005 in., as it does for
the tracer. This minimal interference could lead to a
serious skidding problem.

Experimental Evaluation. The accuracy of the analysis,
as well as the suitability of any barrel design to field use,
can only be verified through extensive testing. Toward
this end, a quantity of barrels of various configurations
has been procured for evaluation of system performance
levels. Table 7 is a matrix showing the quantity and types
of barrels which will be the core of an exhaustive barrel
performance program. These barrels will be tested along
with approximately 45,000 rounds of 5.56mm ball and tracer
ammunition against current SAW performance requirements
so that sufficient statistical significance is obtained,
pointing to a singular rifling configuration.

Plans for testing currently envision adhering to current
acceptance standards for 5.56mm and 7.62mm ammunition and
will mirror sample sizes of barrels and ammunition contained
therein.
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TABLE 7

5.56MM (SAW) AMMUNITION/WEAPON INTERFACE

BARREL MATRIX

BARREL ACCURACY PRESSURE WEAPON* WEAPONt
BORE �TYPE (CHROMED) (UNCHRONJ

ICONFIGURATIO
QUANTITY

*: STANDARD 5.56MM 2 3
RIFLING

6-GROOVE BORE
1 IN 12 TWIST

*, UNDERSIZED TRACER
* (CONFIG. 1)

6-GROOVE BORE
*1 IN 1i TWIST

UNDERSIZED TRACER
(CONFIG. 1)

6-GROOVE BORE
1 IN 12 TWIST 2 2 3 2
BALL SIZE TRACER

S(CONFIG. 2)

6-GROOVE BORE
1 IN 11 TWIST 2 2 3 2
BALL SIZE TRACER
(CONFIG. 2)

6-GROOVE BORE
1 IN 11 TWIST
INCREASED LAND HEIGHT 2 2 3 2
FOR ECCENTRICITY
(CONFIG. 3)

12

. )1



DESIGN OF EXPERIMENTS DEALING WITH MAN-MACHINE INTERFACE
IN CURRENT COMMUNICATIONS SYSTEMS

R. J. D'Accardi and A. S. Bennett, U.S. Electronics Commmnd,
Fort Monmouth, New Jersey
J. R. Hennessy, U.S. Army MEROC, Fort Belvoir, Virginia

ABSTRACT. Recently, the US Army Electronics Command has supported experiments
dealing with man-machine interface problems occurring in Tactical Communications
Systems. The aim was to characterize communications system operators' per-
formance under various environmental conditions related to tactical operations.
The study was directed towards system equipment such as the standard teletype
and optical-read-only terminal equipments. Using these devices, the signifi-
cance of acoustic noise and ambient light on operator performance was studied
under sixteen combinations of environmental conditions.

The object of this presentation is threefold. First, we discuss the methods
of evaluating message transfer over man-machine interfaces to include audio
and visual. Second, we discuss the design of the experiment and modeling to
determine the operator characteristics under different environmental conditions,
and third, we present statistical estimates of: (a) the effects of the
controlled variables (ambient light and acoustic noise) upon the transcription
accuracy of several operators, (b) measures of experimental error to define
a range of values, for a prescribed level of confidence, within which the
true value of the estimates may be found, and (c) the most significant
combinations of environmental effects on operator performance. Several multi-
variate regression models which characterize operator performance are

t presented and the criteria for chcising the best model are discussed. 5

INTRODUCTION. Information gained in evaluating and solving man-machine
interface roblems that occur in complex communications systems is extremely
important to systems engineers committed to the mission of the design and
fabrication of future generations of equipment. Sophisticated systems of
Command and Control, computer-aided man-in-the-loop systems (e.g., manned
space craft), human response to audio and visual displays, management functions,
pattern recognition, man-computer languages, cutaneous communication and many
other facets are of concern where an operator must perform a control task, or
decision task. At present there is a large volume of on-going work oriented
towards man-machine interfaces which span the projected needs of the Armed
Forces. For example, work in progress by the Naval Electronics Systems
Command, 6570th Aerospace Medical Research Laboratory, DA ARI for the
Behavioral Sciences, ECOM and HEL (to name a few) generally deal with evalu-
ation of complex system interfaces, assessment of operator performance
capabilities for a wide variety of tasks, analysis of manual functions into
tasks, analysis of human control functions, and the physical and psychological
Scharacteristics which affect the assessment of operator performance capa-
bilities. Much of the on-going work concerns the psychological and
physiological aspects of command and control in tactical operations, weapons
systems, vehicles management, logistics, and communications. Some of the more

1
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specific areas of investigation are:

1. Work/rest schedules and effects on man-machine performance.

2. Utilization of Bao-electric phenomena to automatically control
Scomplex systems.

*; I3. l4easures of operator performance under different mixes of equipment/
personnel and procedures.

4. Physiological aspects (fatigue, alertness, metabolism, endocrine
gland functions, and central nervous system) of operator efficiency
avid man-machine interface.

5. System simulation to study the Impact of operator performance on
complex systems as a function of environmental threat, mission, and
work load stress.

6. Army Tactical Flight operations under adverse visibility conditions.

7. Influence of USAF operational environments on air crew utilization.

Examination of ongoing research in these areas indicate that there is
no clear cut procedure to evaluate the human subsystem in a sophisticated
communications system or the effects of environmental stress on operator I

performance. Army communications requirements in a tactical situation often
require 24 hour operations and personnel are required to work either on
standard or unpatterned and frequently extended duty schedules, in a variety
of environments, each characterized by multiple stresses occurring in a
random manner. For example, the accuracy in reading an optical display Is
dependent on many variables such as number of lines, characters, ambient
lighting, environmental noise, speed of display, correction time, back-log,
operator physiology (e.g., mood, fatigue, attention, and training), display
brightness and size, and effective signal-to-noise ratio (legibility) to
Name a few. Since future Army requirements include optical display terminals,
it is essential to provide insight into those variables that affect accuracy
through the man-machine interface and the effects caused by physiological
factors. To answer the Army's need for measures of man-machine interfaces
which occur in communications systems and to enhance the design of future
families of equipment, this report will address teletype operator per-
formance as the environmental factors of ambient light and acoustic noise
are varied. The design of the experiment*perfarm at Ft. Monmouth, New
Jersey during April and May 1975 and results are discussed. Experimental
results and several models are presented which show the significance of
these variables on experienced teletype operators.

14



DESIGN OF THE EXPERIMENT. The significance of acoustic noise and ambient
light on operator performance was investigated using a visual display
transmission device, see figure 1. This is a visual terminal designed to
interface with computers or store-and-forward devicds. Primarily, it is
a developmental equipment intended to visually present messages on a CRTdisplay where an operator can see and correct his message prior to transmission.•: •.The advantages of this equipment over the standard military teletypewriter

were not addressed in this experiment.

The experiment consisted of testing the transcription accuracy of six
experienced communications-center operators under 16 combinations of
environmental concitions. Ambient light was varied at four levels, ranging
from 24 ft-candles to 3 ft-candles, and acoustic noise was concurrently
varied at four leels ranging from 55 dBa to 95 dBa. Sqund pressure level
(SPL) measured in dBa is in reference to .0002 dynes/cm'. This is con-
sidered the threshhold of hearing and is roughly equivalent to a leaf
"falling" on a quiet day. The 5SdBa level was considered the quiet
condition where only the inherent noise from the terminal equipment, sound
room noise, and thermal noise were recorded. The 94d49 level represented

S an extremely a-anoying and distracting "pink" noise. The noise-power per
S unit frequency for this type of noise is inversely proportioned to frequency

over a specified range and slopes down at 3dB per octave from 20Hz to 20KHz.
These chaoracteristics are more common to conference type noise where the
higher and lower frequency components characterize motor and equipment
noises. Pink noise was also used because it has relatively constant energy
per octave-bandwidth. The 24 ft-candle light level compared favorably to the
Army Corpsof Engineers standard for office lighting. The other chosen levels

T of 12, 6 and 3 ft-candles, respectively, represented successively deteriorating
ambient light conditions. Throughout the testing, the brightness of the visual
display was constant.

For each test the operator was required to type his name, treatment
combination, and date as part of the message, see figure 2. The messages for
the experiment consisted of forty random-letter word groups of five
characters each. They were derived through a random number generator and an
alphanumeric conversion. No message was a duplicate nor were they duplicated
by any of the operators on either terminal equipment. The random letter
format was used so that the operator could not identify or recognize message
words and therefore would have to concentrate on the given formats to avoid
making transcription errors. The aim of the experiment was to vary the
environmental variables and to observe the accuracy and speed of transcribing 4
the random letter formats as a function of these variables. The response
variable, accuracy, was the measure of transcription errors that each operator
committed per message format. The errors considered were the following:

1. transposition

2. missing letter

3. extra letter
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4. incorrect space

5. extra line feed

6. missing word groups

7. wrong letter

8. line out of sequence (skipped line inserted after detection)

9. word group out of sequence j
The results were compared to an acceptable operator norm, i.e., typing a

message format on a standard teletype terminal (see figure 3) under
the same conditions. Each operator was tested in four sessions, each session
programmed for eight random environmental combinations, four for each
terminal equipment, where tests were alternated between the optical display
and the standard teletypewriter. This was done to reduce the effects of learning.
A thirty minute familiarization period was given each operator prior to the
tests, and a standard instruction sheet was distributed during this period
to Insure uniform orientation with the equipment and with the purpose and
procedure of the experiment.

The effect of any environmental combination is considered to be the sum
of three effects, namely, those of sound, light, and the interaction off light and sound. To adequately analyze these effects, a two-lvelfactorial
experiment was formulated with six replications. The four levels of acoustic
noise are combined with the four levels of ambient light giving 4 x 4 or sixteen
treatment combinations. For a two-factor factorial experiment with n
observations per cell, run as a completely randomized design, L1] , [2] , a
general model is:

Yijk l+ Ai + Bj + A1 Bj + Ck(ij)

where Y is the response variable, i.e., the number of transcribed errors, and
A and B are the main effects of light and sound, AD is their Interaction, e is
the experimental error, (i.e., the extent to which the observed data and the
general model disagree) and their respective levels are i = 1,2,3,4; j - 1.2.3,4,
with k - 1,2 ---- 6 observations per cell. The interaction termr adjusts for the
failure of either one of the main effects to remain constant for each level
of the other. The test runswere randomized as shown in table I. This was
done to minimize the effects of training.

I
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Figure 3 -Teletypewriter Terminal
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TABLE 1

TREATMENT SCHEDULE PER OPERATOR

Environnt•a Treatment
Combinations

Optical Teletype
Session Run Display Terminl Terminal

1 1 1,4 3,1
2 4,3 4A4
3 3,2 2,2
4 2,1 1,3

II 5 3,1 4,1
6 4,4 1,2
7 2,2 3,4
8 1,3 2,3

II1 9 4,1 2,4
10 1,2 3,3
11 3,4 1,1
12 2,3 4,2

IV 13 2,4 1,4
14 3,3 4,315 ill 3,2 •

16 4,2 2,1 Al

(Treatment - (Ambient Light Level, Acoustic Noise Level)

Ambient Light Acoustic Noise
Level value Level Value
"-T- 7M]-candles -T- -FdBa

2 12 ft-candles 2 70 dBa
3 6 ft-candles 3 80 dBa
4 3 ft-candles 4 95 dBa

20
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ANALYSIS: The following ANOVA tables and statistical estimates were formu- O
lated to analyze the transcribed errors for the standard teletype terminal and
for the optical display terminal (tables I1, II1, IV and V):

TABLE 11

ANOVA FOR STANDARD TELETYPE TERMINAL

Degrees of
Source Sum or Squares Freedom Mean Square Error 'F" ratio

Ambient Light, A1  55.94 3 18.65 0.33

Acoustic Noise, 8 99.70 3 33.23 0.59

Interaction, A 1 B 109.93 9 12.21 0.22

Error, Ek(t) 4494.67 80 56.18 ----. j
TOTAL 4760.24 95

TABLE III

ANOVA FOR THE OPTICAL DISPLAY TERMINAL

SSource Sum of Squares freedom Mean Square Error "F"- ratio

Ambient Light 65.28 3 21.76 0.32

Acoustic Noise 276.03 3 92.01 1.35 J

Interaction 55.18 9 6.13 .10

Error 5437.50 80 67.97

TOTAL 5840.12 95

21
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TABLE IV

STATISTICAL ESTIMATES OF TRANSCRIBED ERRORS
FOR THE TELETYPE TERMINAL

1ntbtent Acoustic Noise Level For All
Light Level Statistic 5SdBa 70 dBa 80 d8a 95 dBa Sound.Levels

24 ft-candles 3.0 5.8 5.8 6.2 5.7
S 1.87 3.96 3.7 6.42 4.23
Sy. 0.84 1.77 1.66 2.87 0.96
V

12 ft-candles T 2.2 6.8 6.8 9.8 6.4
? 2.17 2.59 5.54 8.47 5.63

S0.97 1.16 2.48 3.79; 6

6 ft-candles 5.0 3.8 5.0 7.2 5.25
Sy 3.94 2.59 6.2 4.6 4.34
Sy. 1.76 1.16 2.77 2.06 0.97

3 ft-candles T 4.4 4.0 3.8 4.2 4.10
S . 3.36 4.95 3.03 1.79 3.19
S+ 1.50 2.21 1.36 0.80 0.71

Overall
For All Light " 4.5 5.10 5.35 6.85 5.36

Levels Sy 3.30 3.60 4.55 6.76 4.43
0.74 0.80 1.02 1.29 0.50

22

-------------------------------.



I

"TABLE V

STATISTICAL ESTIMATES OF TRANSCRIBED ERRORS FOR THE
VISUAL DISPLAY TERMINAL

Ambient Acoustilc Noise Levil "Ft-,' Al I
Light Level Statistic, 55 dBa 70 dBL 80 dBa 95 dBa Soun level',

24 ft-cfndles T 3.4 5.80 .6.20 9.2 6.1 b
Sy 24 4.76 5.17 4.82 4.61
Si 1.21 2.13 2.31 2.16 1.03

12 ft-candles " 6.8 5.0 7.0 8.60 6.9
S 3.77 2.77 2.45 6.35 3.99'.
A 1.69 1.24 1.10 2 4 0.89
Y

6 ft-candles, 7 5.0 5.2 6.2 5.1 5.46
S 3.16 2.39 3.96 4.16 3.28

1.41 1.07 1.77 1.86 0.73

3 ft-candles T 6.0 5.2 5.4 8.2 6.2
S 3.67 3.42 54 4.71 4.23
SY 1 1,,64 1.531 2.46 2.11 0. 94

*" Overall
For All Light t 5.3 5.35 6.20 7.00 6.19
L ::vels Sy 3.34 3.18 4.11 4.87 4.00

S7  0.75 0.71 0.92 1,09 0.45

Although one might expect that acouhtic noise and ambient light wot-ld
strongly affect the production of transcription errors, no conclusive
statistical significance as to environmental effects can be adjudyed
from the data. Exam(l;:.tion of the MSE, however, shows that acoustic noise
has a stronger effect in error production than either the Ambient Light or
the interaction of the two (see tables II and III). Table IV and V show,
for all light levels, the average transcription error produ..ion
increased by about 60%. For all sound levels, the transcription
error did not vary significantly.

The operators chosen were all of the same minimum proficiency, each
able to transcribe messages at 60 w.p.m., with the exception of one
trainee. Thus, examining the variation of transcr",tion errors fur the
visual display terminal it 70 dBa (see table V) for light levels below
?4-ft candles, the mean T and standard deviation, Sy, decrease from the
55 dBa values, then increase as noise is increased to 95 dBa.

23



Interviews with the subjects seem to indicate that 70 dBa is the approxi-
mate level of noise to which they are accustomed, and therefore they were
less distracted by environmental clnges in ambient light at this sound
level. The findings indicate that for the visual display terminal under
quiet conditions (I.e., at 55 dBa, the noise below standard comcenter
operational levels) at lower levels of Ambient Light, more errors were
made than at normal operating (70dBa) level. The effect of noise at the
higher levels (80 and 93 d8a) indicates the variability and adaptability
of the operators to acoustic and photic noise. It was also noted (as was
expected with the visual display terminal) that changing light levels had
the least effect on operator performance.

Six multiple linear and non-linear regression models were fitted to
the data, by the least squares method, to characterize operator performance.
The models were of the form:

(1) Y - ao + + P2 X2 + E12

(2) Y R Bo + BIX1 + BIX2 + XlX + Ell

(3) Y = $o + O1 XI + X2 +B2 XI + 8,X22 + BX1 X, + C12

(4) Y - Bo + B8X1 + 62 X2 + X2 x + 84X2 + SXSx + 8,2 + BX 1 Xl

+ BGX 2 X + BX X2 + C

X=JBX + E o<j+ki3 -12 91 2 12I(5) Y - Z 8t 1^ -IX +- <J1

(6) Y a Bo + BlnXl + a2Xi + % ln"X + 8$X2 + B5X2lnX,+E 1 2

Where Y is the observed operator response, X1 and X. are independent
variables corresponding to ambient light and acoustic noise respectively.
The estimated values of the coefficients, standard errors of the estimates,
and coefficients of determination are summarized in the following table:
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TABLE VI

Least Squares Estimates Using Coded and Uncoded Data for theOptical Display Teminal.,

S.... ' odel
Estimate 1 2 3 4 5 6

Uncoded Uncoded

00 7.078 7.078 6.785 6.684 21.049 13.71.5

0 1 0.100 .100 0.190 1.752 -3.495 -8.045
0 0.680 .680 0.680 0.655 -0.362 -0.260

A .321 -0.099 0.449 0.084 24.986

0 0.225 0.110 0.002 0.002

, 0.320 0.225 0.004 -0.636

-0.543

7 0.232

B -0.076
i 6, -0.108

00 .307 .260 0.537 0.509 9.353 9.024

ASBo .224 .190 0.260 1.279 3.246 14.836

Solz .210 .179 0.171 0.743 0.229 0.2465

S03 .130 0.204 0.521 0.627 24.845

Sol. 0.133 0.166 0.001 0.001
-A
0 5B. 0.125 0.124 0.023 1.000

SB. 0.481

S17 0.131

S . 0.091

s•% 0.181

S1.227 1.041 0.996 0.930 1.114 1.221
(0- )

Ry 0.450 0.634 0.721 0.854 0.651 0.481



Clearly, the higher order model (4) fits the data best on the basis
o minimum residual variance, S A and maximum coefficient of determination,

This provides the model:

Y 6.785 + 1.752X, + 0.65SX1 + 0.449X.

+ o.11OX: + 0.22SX1, - 0. 5401

+ 0.232XiX1 - O.076XIX2 - 0.108X1 Xj2

Testing for fit, the sum squared error due to regression and the respectivedegrees of freedom for the variation of Y• from the curve are 3.378 and

(9,6) respectively. Ifthe model is cory~ct, the residual mean square hasthe expected value of a'. Using S a . 0.5187 z MS , the P ratio Is:

F MjSc "3.378 " 3.907

and is not significant since 3.907 <5.520. Thus, on the basis of minimum
S3 , maximum RI ^ and this test, we have no reason to doubt the adequacy j

OfYt is particular model. This technique is presented to show the feasibility

of using multiple least squares regression for this type of man-machine
interface problem. A more sophisticated approach is planned at a later time
when more data is obtained.

Conclusions: Several adverse aspects of the terminal equipment were
iscover which may affect error production. The angle of the keyboard

(see figures 4 and ) of the visual display terminal was apparently not
conducive to optimum performance. The teletypewriter keyboard was
unanimously considered more comfortable. Also, the detent pressure of
the individual keys and the absence of feedback "thump" seemed to increase
the probability of transcription error with the visual display terminal.

While the results do not show statistical significance of the environmental
effects, the trends In the statistics (particularly the MSE and overall means,
-.see tables 11, 111, IV and V) indicate the possibility that with a larger
population of more homogeneous (as to expertise) subjects, statistical 4
significance will emerge. That is, the variations in human performance will
be greater under abnormal environmental conditions. If such abnormal
conditions are to be expected under battlefield conditions, then significant
Straining information could be extracted from such a follow-on experiment.
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Another measure that could attain statistical significance is the mean
transcription error production for the group. Such statistics would
indicate the outer bounds of expectation under battlefield conditions.
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PLANNING FR THE SURE T OF FLIGHT TRAJECIORY
J. B. GOSE

J. V. CARRILLO
Quality Assurance Office

US Army White Sands Missile Range
New Mexico

ABSTRACT. This paper describes a procedure used at White Sands
Misslle" ane, New Mexco for selecting instruments to measure a test
object's location and body angles. Criteria for selection include
rnumber and location of instruments, types and quality of measurements,
probability of operation, and data reduction procedures. Optimizations
are made in teram of cost-to-support, probability of success, expected
erro in data and insnumentation system used. Constraints include
expected "Jajectory and object dimensions, optical image size and aspect
angle, tracking rate, atmospheric distortion, and for same applications,
Sloations of existing facilities.

The procedure employs both theoretically and prapmatically derived
models and utilizes observed error distribution and reliability data.
It has been automated for computation on a UNIVAC 1108 omnputer.

1--. DTO•JCTION. The purpose of this report is to outline the
mathenatical and statistical scheme used for the Resource Conservation
Planning (RCP) Model. The RCP is used as a tool for evaluating and
foruulating test support plans. 1 The model developed is formulated
from the malti-station solution now in use at WSMR, better known as tho
Davis Solution.2 This is a least-squares solution which is identical
to the maximum likelihood estimates of missile position in the particular
case in which the instzwmentation measurements are normally distributed.
In 1965, ILT Charles A. Hall, PhD, expanded the least-squares formulation
to provide an improved estimate and to minimize the number of observations
required. This concept became known as Minimal Station Participation
(MEPAR). 1 The RCP is an extension of this concept. The scheme has been

1J. V. Carmillo and R. L. Garcia, A Techn!que for 2putLngfThProbability of Ybeting a User's Traectory Requirement, QA Technical
SReport NO. 121, (RNM , 1975). "

1R. C. Davis, Technicues for the Statistical Analysis of Cinetheodolite
Data, (China Lake, California, 1951), page 1.

'C. A. Hall, Deletinkg Observations E~xm a Least-Squars Solution,
Proceeding of the Eleventh Conference on the Design Experiments in Army
Research Development and Testing, ARD-D Rpt 66-2, (Durham, NC, 1966).
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adapted to oinetheodolites, Telescopes, Radar, and DOVAP for position

and attitude applications. The aP model uses for input empirically

developed mnasueint erro; probability tables f each measurm nt
system, a W0oposed flight test trajcctory of a a specified test object,
and the uncrtainty (flight test r-ir-ments) in the flight test data
that a Range User can tolerate in r.Ai experiment. The probability tables
are used to omnpute the pyobability of a particular data eror for aS...selected or given geometry cnfi;,L.-tion. The final output is in terimsof the ft o 14ty of Imesting a pwrtioular Range User requirement.
Heanes c: t-,jup trade-offs can be developed based on th rdtr

a user my want to take in ouapleting his expermnt. The less risk
the user can accept, the higher the support cost.

Restating the problem as: "Determine the prob3bility of satisfying
a Range User's rqui nt for a test object's position and/or attitude
over a given interval, such that the results will allow cost tnade-off
analyses."

The problem statetint gives rise to the specific questions of how to
identify the minimum set? How to find the probability of success?-'n
how "o solve the problem W!ih a ooMuer? Th approach taxan obviates

he need to answe 'the rin question (as we shall see). The latter two
ame the substance of this paper.

2. ESTMIATION OF THE PROBABILITY OF SUCCESS. Errmr estimates can
be described probabilietically and, of course, reliabilities are
probabilities. Thus, they can be conbined in a probabilistic formulation.
The probabilities involved in the estimation of meeting a requirement for
one point of a trajectory can be expressed in equation form as:

T M
P(Rqmt)t [p(ce' < S X) P(Sta 0•)]i (Eq 1)

where,

P(PRimt)i =Probability of meeting the requirmet at the ith pointA

al = ror in observed data

sx 2 Maximum allowable error frn the requireuent
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P(Sta OT) a The ptbambility of suooesful statido operation

M1 E(X)

ia re 2, 39 149 *. X
2ýkz t*W aluber, of sites available

Thea j'obability f the entire trajectory is. to d~aisrtion of the
ohmrts for woea at all. points fra th.? population of oocwnwwnes
and is fourd by uimply averagIing the risk ovw all points;

R

P(Rqzt) E i zMIk (Eq 2)
R :

R t he• .i nber of traectory points.

Theway ulaiown .p"terinEquation1is a 2 aifoundinthe

following mmnrew.

The basic regression r&atimrsp is

* * Matrix of Observations

B a Jacobian Matrix

Oe3 Matrix of Derived. ¶j eotory Data
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Solving for a

aw (wB)"w BW (W a Weight ?tftix)

',. * o(B J)-

or

(BtB)' for W [a2)1

| " .

* 0 ,2(tfl)~(Eq 3)

This last equation (Eq 3) defines the data error in terms of G•eu1•rlo
Dilution of Precision (GDOP) and measurwmt error; both of which are
known or knowable. For a given gecmetry, (BtB)"Z is deterministic
while a,' is probabilistic. Thus, the probabilistic nature of (ie2

is dependent on the probabilistic nature of r 2

In actual practice, a requirmt, Sx2 $ is defined as the trace of
a variance-covarianoe• m atrix. We may, therefore, attack the heuristic
nature of a' simply by introducing a scalar I'

a' 2 (SI()TR
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inft Eq 3, *ddh beumw

Ito x 82 s,(BtB)1l

'The pvbability of mu .swomnt ezrm (S) w is the probability that
a6 A< SX4 (gee acmuje Flgure 1). Tkose data are available ft-cm histozie.
of poez'onunos.

1.0~

p .
R
0

L

Y .2

20 40 60 so
o(SEC OFARC)

FIQUR!', I
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Equation Iuaus

mI
P(Rqmt)w. a ua* x P(Sta Oyr)J M 4E~)

Thefm"~ for oCqautiog the prmbability that cmtly M of N sdliduled
Inuu~ete operte muocesfufly is:

(P4+ 14 1 N) 4q5)

whre R.. R. ar h eib aues for ismet 1, 29
39640 Mb Q seem QN are th (1-.R )g (1-R )j gasp (1-I) values

for isoh of the instrwasnt, respectively. Note that theme are

term. to be W~ddsd in Eq S.

An ecmqVG. Of the ccaiutat3.orAl ymvediwg for a pczAit ia shown in

3. rmT='n : IVDEL ON MII CMt'WYI'E A little thcougt an the

Was Verified for tbe Progmw prepared for the ttI1VAC 1108 Omnputan: A 5
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station solution taking 2 seconds, 11 st•,tions taking 1 minaco, 15
stations taing 14 minutes, stc Altemnatives to minimize this moblem
-wee (1) to improve the speed of each owputation or (2) to redce the"! number Of canditdae site@. The latt• course was puirsued.

An initial screening was derived based on insinients opezrating
limitations.

OPTICS - Elevation Angle- Between 30 w SOP

Image Size - >35 Microns (0) for Position '4

>100 Microns (j) for Attitude

RADAR DOVAP - Elevation Angle - Between 100 and 800
"contributi.on to the error. For each point, an error constant4 D is

calculated frcm:

H2.( for the jth site

Kis an index of ob3ervation (•1

L is an index of canputed valuem (e)• ' L * 1 , 2 , 3 t , . ,

and

H (Bt4B)1B tw

is a weight matrix ft= ao2 W I

from Cy2 : 2(B B)1

a62 (BtWBY1

4 •C.f., Ref 
3
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D3'S th relate to afrC

I. A

' 00 TR -
SL

IF

whe,

A The set of sites used

L -3 for Position data
2 for Attitude data

The D 's vary with GDOP, therefore, the largest value at one point nay be
smaller than the smallest value at another point. Since all points are
assumedly of equal importance to a custamer, the GDOP effect (Di's) must
be normlized. This is accomplished by the following scheme. First, an
average Dj is computed. This average value is divided into each Di value

for all points. Then, each site's normalized point value is summed over
all points. The sites are then ordered (largest to smallest) based on the
magnitude of the sum. The first three sites (with the largest values)
are then selected for the first estimate of meeting a user's trajectory
requirenent. If the probability of meeting the requirement is sufficient,
the computation is terminated. If the probability is insufficient, the
site with the next largest value is added to the computation. This
procedure is continued until the desired probability is obtained or all
the sites in the group are used. This procedure has resulted in minimizing
the number of sites required.

In evaluating the procedure, it was found that the sites selected
A

produce the maximwn P(Rqnt) 95% of the time; and for the remaining 5%,
the P(Rqmt) was within 3% of the maximnm.

* 3
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S. CONcWUSIONS. The models discussed in this paper can be used for
analyzing cost-to-support tade-offs. Cost-to-support is related directly
to the type and amount of instumtenation necessary to met a particula
user requirement. Th=s, the outp•t of the XP Model provides the information
necessary for risk analysis from a s aspect. It is readily apparent F
that the more stringent the error requir-mnt or the less risk of data loss
a user can accept, the higher the cost-to-support.

I haere are liiations t the model. First, sirnce the errcr and
reliability values used are based on history, changing performanme will
result in erroneous answers; futher, since the present reduction process

* is modeled in the oquations, a change in the procedure will necessitate 2S, revision of the model.

S I
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NON-RANDOMIZED CLINICAL TRIALS

E. A. Gehan and E. J. Preireich

The University of Texas System Cancer Center A

Houston, Texas . A
ABSTRACT

This paper gives a general discussion of some prinniples involved in

planning comparative studies, namely, the objectives, comparability of

patients, feasibility, and ethics. For each principle, circumstances are
A

given for which a non-randomized study is to be preferred to a randomized

one. Examples of non-randomized, controlled studies are presented utilizing

literature controls, an acute leukemia late intensification study involving

matched controls, and an acute leukemia sequence of three studies. In the

latter example, adjustment for prognostic factors was carried out to enable

the studies to be compared with respect to response rate and survival.
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NON-HANDOMIZD CLINICAL TRIALS

E.A. Gehan
and

B.J Freireich

The University of Texas System Cancer Center

1. Introduction

Consider the design of the following Army experiment (hypothetical).

Because of the need for saving money, an officer in the Quartermaster Corps

does a study of shoe sizes for Army recruits. He finds that the distribution

of shoe sizes has several peaks and that it would be possible to-save money in

buying shoes by ordering only a small ntmber of sizes. He decides that the

best way to determine which sizes to buy is from a randomized comparative study.

His idea is to issue three sizes of shoes: 8½, 9h and 10h randomly to incoming

recruits and their "response" to a particular shoe will be measured following

a ten mile hike by interviewing and a physician's examination. The ultimate

objective is to choose a single size of shoe for all recruits. What ir wrong

with this experiment? The objective is stated clearly, the designed experiment

could be carried out, treatments would be assigned at random and there wouldn't

be much difficulty in measuring reaction of the recruits to the assigned shoes.

It is obvious that the whole experiment is ridiculous because each individual

has hi3 own shoe size and a choice of shoes should be made accordingly. Random-

ization, in this case, added only a pseudo-scientific aspect to the experiment.
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The outcome could be predicted well and a great deal of suffering would be

caused among the Army recruits selected f'or the study - either by randomization

or otherwise. In clinical research, treatment must often be tailored to the

individual patient either in terms of dosage or schedule and a randomized com-

parative study is difficult to accomplish when treatment is individualized.

Too often, randomized comparative clinical trials are analogous to the hypo-

thetical Quartermaster who proposed a randomized comparison of shoes of different

gizes.

In cancer clinical trials and in other disease entities, the patient is

in a life or death struggle against his disease. His objective is to win the

battle and he clearly would like to be In the hands of a physician who would give

him the best chance of winning. Would the best chance be as a patient in a ran-

domized comparative study or-aS an individual receiving care from an outstanding
physician who used his best knowledge of patient, disease and treatment to choose

a treatment plan? An analogy sight beathe selection of a designer for a car to

win the Indianapolis 500 mile race. Would a designer be chosen who did a random-

ized comparative study of every design feature to be added to the car or would

one choose an experienced designer with a good record and ask him to use his best

judgment to design a car to win the race. Not many individuals would do random-

ized comparative studies in an attempt to win the Indianapolis 500; why then the

emphasis on randomized comparative studies to win the battle against cancer or

heart disease?

In this paper, a discussion will be given to the general considerations

involved in planning a randomized vs. non-randomized comparative study and some

specific examples of successful non-randomized studies will be given. These

studies involve selection of control patients from the literature, from matched

patients and from the previous study in a sequence of clinical studies. Recent

papers stressing the value of non-randomized studies are by Gehan and Freireich

(1974) and Freireich and Gehan (1974)., 43



2. General Considerations

Pour aspects of the comparative clinical trial will be considered. These I

are: (a) objectives; (b) comparability of patients; (c) feasibility; and (d)

ethics.

(a) Objectives

Chalmers, Block and Lee (1972) have published a paper on controlled clin-

ical trials in which the main theme is illustrated by a humorous conversation

between two biostatisticians. First biostatistician, "How's your wife?". Second

biostatistician, "Compared to whom?". The humor of this parable emphasizes two

important and distinctive facts about the man's wife: the first being how does

his wife differ from other wives, a comparative fact; the second, how is his

wife in his own judgment, that is, what is his estimation of his wife's capabil-

Sities. This fundamental difference is frequently overlooked in the design and

conduct of a clinical study. It should be emphasized that an important result of

a therapeutic investigation is the measurement in a quantitative sense of the

effectiveness of a given treatment. There are situations in which the important

question is not how effective is this treatment, but is this treatment more or

less effective than a standard or some other form of treatment. In general, the

latter question is not as significant as the former - for both treatments and

wives.

An essential ingredient of clinical research is a significant objective.

Too often the concept of randomization is equated with the concept of research

while non-randomization is equated with "non-scientific" or "uncontrolled". One

cannot replace the intelligent, imaginative, creative work of a clinical scientist

with the routine application of a clinical trial technique. In cancer research,

there are many examples of non-randomized studies that have led to important alter-

ations in methods of treating patients. Examples are the discovery of mechlore-

thamine in the treatment of Hodgkin's disease, the first antimetabolite methotrexa'
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in the treatment of patients with acute leukemia, vincristine in acute leukemia,

mnd combination chemotherapy in lymphore and Hodgkin's disease. These were all

ramatic advances in the treatment of patients with malignant disease and this

owledge was derived from non-randomized clinical studies. What new and effec-
,ive treatments have been di~covired utilizing randomized clinical studies?

(b) Comparability of patients

As A.B. Hill (1962) has put it, a sine qua non in the proper conduct of

controlled clinical trial is having comparable groups of patients. A clinical

.rial designed to evaluate the relative effectiveness of two or more treatments

,hould be planned so that the only differences among treatment groups are in the

ctual treatment received. This requires comparability of patients as they are

intered into study, managed when on study, and analyzed when the study is completed.

The entry of patients will be discussed here and one technique for achiev-

na comparability of patients is randomization, possibly stratified so that there

Ire separate randomizations of patients in prognostic categories. Even the pro-

lonents of randomizatin agree that randomization guarantees comparability of

atients on tho average and this needs to be checked in every clinical trial. It

jay even be argued that randomization is a guarantee of non-comparability of treat-

ent groups with respect to some patient characteristics, if enough patient char-

S teristics are examined. For example, if there were a S% chance that the random

Ssignment of patients would lead to a significant difference between treatment

oups with respect to a given patient characteristic and the distribution of 20

haracteristics were considered, it would be expected that there would be a sig-

rficant imbalance betwoen groups with respect to at least one characteristic.

Daniel (1970) has pointed out, "Randomization is a confession of ignorance.

'ill randomization is a confession of full ignorance." In other words, a full

ýndomization should be accomplished only when a clinical investigator is not

• nizant of any patient characteristics that influence prognosis.
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I I
Another technique for achieving comparability of patients at time of

entry into study is to select patients for a control group according to certain

characteristics, namely those which are known to influence prognosis. If treat-

ment A is the treatment under study and treatment B is a standard or "control"

treatment which is to be compared with A, the control group of B patients could

be selected from the literature, chosen on a matched basis from previously or

concurrently conducted clinical studies, or selected from the previous study in I
a sequence. The primary assumption needed for selecting a control group is that

the important patient characteristics related to prognosis are known, so that

there is a firm basis for selecting a comparable group of patients. Further, it

must be assumed that differences which do exist between the groups selected (such

as time, institution, physician, or the availability of supportive care) have little

or no relation to the outcome of the treatment. In a disease which has been

studied extensively, techniques of regression analysis can be used to determine

patient characteristics related to prognosis. See Armitage aid Gehan (1974) for

a review of available methods. Some examples will be `"russed in section 3.

(c) Feasibility

In general, the feasibility of a pmrticular study relates to the number

of patients required a,d its duration. For a particular investigator or group

of clinical investigators, one can compare the strategy of proceeding from one

fairly large study to the next, each based on a single treatment vs. the strategy

of randomizing between two treatments in each study. Suppose the investigators

in both circumstances has exactly the same requirements concerning the number of

patients to be studied on each treatment. Suppose the number required for each

treatment is N and the group of investigators accrues this number of patients in

one year. Assuming that no follow-up period is required for observing the effect
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of treatment, the strategy of proceeding sequentially from one study to the

next means that one year will be required for each study. Tle investigator who

always randomizes between two treatments requires two years to complete each

study. It is true that at the end of two years, an investigator following either

strategywill have evaluated t treatments, however the investigator who does

sequential studies'will have an opportunity to choose a second treatment based

upon the results of the first. Further, some investigators adopt the practice

of always carrying along the best treatment from a previous study in the current

study; this results in evaluating three treatments every, four years compared

with four treatments for the investigator who proceeds sequedtially. Tite latter

• investigator will have had the opportunity to build upon'knowledge gained from

previous studies to choose three treatments, while the investigator preferring

simultaneous comparisons will have chosen only one new treatment based upon the

results of a previous study.

Suppose an investigator is doing a simultaneous comparison of treatments

A and B in which a fixed number of patients is to receive each treatment so that

Sthe difference in response rates can be detected at a given significance level and

power of test. These specifications lead to n patients being required on each

treatment and tables of n are readily available in textbooks (Cochran and Cox,

.1957) (Holland and Fret, 1973). An experimenter who does studies in sequence of

one treatment might be prepared to assime that the response rate to the control

treatment (B) is so well known that it may be taken as a fixed quantity, say p,

and no patients need receive B in the trial. To carry out a statistical test of

the difference between the proportion of patient's responding to A and B at the

same significance level and power assumed above, only n/2 patients are needed on

treatment A, which is only 1/4 thetotal number of patients required for the ran-

domized comparative trial. When the cost of supporting clinical studies is often
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in excess of $1,000,000 per year, a savings of patients and duration'of study

has a substantial dollar equivalent. Even when the response rate to the con-

trol treatment is not known precisely, it may still be reasonable toproceed .1
as if it is known. For examplej in the treatment of patients with advanced lung

cancer, the expected percentage of patients responding to standard treatment is

very low (less than 20%) and sutvival is poor. In this circumstance, it would

be sensible to test a proposed therapy against a specified percentage, say 20%.

The objective would be to find a new treatment that has a response percentage

significantly higher than 20%.

(d) Ethics

All clinical investigators seek results which demonstrate that the overall

prognosis for patients is getting better. Clinical trials in which patients do

* less well than they have in the past are to be avoided at all costs and to be con-

e luded as early as possible. A comparative clinical trial should not be started

unless there is some preliminary evidence suggesting that the now therapy is at

least as good and possibly better than the standard. If this is accepted, the

question can be raised whether it is ethical to enter patients on the standard

therapy when there is little or no chance that the standard could be better than

the new therapy. That is, the objective should be to study the new therapy until

it can be concluded whether the new therapy is significantly more effective than

the standard or not. Study of the new therapy could be stopped when the probability

of its being more effective than the standard becomes very low.

The clinical investigator conducting studies in sequence of treatments is

always giving what he considers to be the best treatment to his patients. Re-

cruitment of patients to a clinic to receive this treatment is much etssier than

for the investigator who proceeds by simultaneous comparisons. The former inves-

tigator can promise all patients, even those who come from long distances, that

they will receive what the investigator thinks is the current best teatment. The
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latter type of investigator can promise only that the choice of treatment will be

determined essentially bj, flipping a cc a 1nd that the trisatamts in the clinical

trial are reasonably good ones.

Neiei ,(1975) hes, stated the ethical problem a" follows: 'The view is

often expressed that each patient must be afforded 'the ptosumed benefit of any

estimated advantage of one treatment over. another, regardless of how slight or

uncertain-that advantagemay be. I insist that this view does not reflect my

attitude About myseitf as a patient, nor does It reflect the attitude of most of -

us. Make no mi stake shout it, this position is incompatible with any experimenting

whatever, controlled'or casual. It does not favor judicious experimenting with a

new technique or drug on carefully selected patients. That, after all, can be done

in a controlled study. Rather, it forbids any' experimenting at all." The ethical

dilemma disappears if, one proceeds sequentially in evaluating treatments.-the

presumed best treatment is always being given. However, what Meier and',many other d

statisticians do not accept is that conducting studies in sequence dan resolve

the scientific problem of properly evaluating the relative effectiveness of treat-

ments. This will be demonstrated by some examples from cancer clinical trials.

3. Examples of Non-Randomized Clinical Trials

In this section, some examples of non-randomized clinical trials are given

in which patients in the control group were selected to be comparable to those

receiving a study treatment. Patients in the control group were selected based

upon their prognostic characteristics and the assumption was made in all studies

that the patient characteristics chosen accounted for the major proportion of the

patient-to-patient variability in response. Literature controls, matched controls,

and patients from a sequence of studies will be considered in relation to the eval-

untion of study troatmonts.
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(a) Literature Controls

In all circumstances in which the same or similar treatments have been

used by others in a clinical investigation, it is desirable to use these patients

as.controls, even when there is also an internal group of control patients in the

trial. Unfortunately, it is usually true that authors do not provide sufficient

data in their papers so that it can be chocked whether the patients reported in j
•. ,• the lifterature are copparable to those in .a given =clinical trilst. It certainly i

would be helpful if authors and thoso engaged in large cooperative group studies

coUld make available basic data on punch cards or computer tape so that others

might use the data for literature controls.

An example of a literature control group is given in the study reported

by Luce-at al (1971)' in which combined cyclophosphamide, vincristine (Oncovin),

and prednisone therapy (COP) for malignant lymphoma was compared to single agent

treatment with cyclophosphamide or a vinca alkaloid (vinb.lastine for Hodgkin's

disease and vincristine for lymphosarcoma) as reported by Carbone, Spurr, et al A

(1968). All patients in both studies had stage III or IV disease. However, patients

who had received major prior chemotherapy or those with moderately impaired bone

marrow reserve were excluded from the Carbone study. Thus, in terms of prior

treatment and bone marrow reserve - two important prognostic factors - patients who

had received little or no prior treatment in the Luce study were comparable to those

in the Carbons study. The age and sex distributions were similar in the studies.

Hence, when adjustment was made for prior therapy, it could be concluded that

*, patients in the Carbone study were comparable to those in the Luce study. The

complete remission rate following COP treatment was 36-50% in malignant lymphoma

compared with 6-20% for the single agent treatment reported by Carbons. In addition,

other series of patients receiving either single agents or COP treatment by a
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slightly different schedule had similar results. Because both single agents and

COO had response rates that were consistent from one study to the njxt and the

evidence that COP was significantly superior, it seemed safe to conclude that COP

was superior to single agent treatment in the induction of complete remissions.

Another example is that given by Sut6w et al (1970) in which the survival

experience of patientt with Wilm's tumor or neur6blastoma, first treated in 1962,

was compared to that of p~tients first treated in 1956. A total of 3S institutions

participated in the study and, for patients with Wilm's tumor, it wai demonstrated

that the age distribution, percentage of children with metastases, and intensity

of surgical and radiation therapy were comparable between the two time periods.

However, 94% of patients received drug therapy (mainly actinomycin-D, vincristine,

and cyclophosphamide) in 1962 compared with 28% in 1956. A significant improval

in survival was demonstrated for patients of all ages without meatstases and for

patients two years or older with metastases. The authors concluded that the in-

creased clinical use of chemotherapeutic agents resulted in the significant improve-

ment in the survival curves. For patients with neuroblastoma, though there was

a slight difference in the survival experience for both non-metastatic and meta-

static patients favoring those first treated in 1962, the difference was not near

statistical significance and it was concluded that the increased use of chemo-

therapeutic agents did not result in a significant improvement in survival time.

A literature control group is useful when patients can be checked for

comparability and, in some circumstances, when it can be demonstrated that patients

in the literature have more favorable prognostic indicators. Authors should be

encouraged to have details of their data available to others for comparison purposes.

(b) Matched Controls

In a matched control study in which patients are to be selected from a

group of patients treated in the past, all new patients would receive the treatment
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1. to be evaluated, say treatment A. A pairmate for each patient receiving A would

be chosen at random from among the possible pairmates in the group of historical

control patients who received treatment B. The applicability of this approach

depends upon having a sufficiently large group of patients for potential pairmates.

Patients obtained by this process who receive treatment A would be as comparable

as possible to those on treatment 8 with respect to the patient characteristics

used as a basis for the pairing. If sufficient patients are available, it may be

desirable to select two control patients for each treated patient, making a com-

parison between control patients to test the selection process.

An example of this type of study is given by Bodey et al (1976) who com-

pared the length of complete remission for patients with acute leukemia between

two groups: a study group receiving late intensification chemotherapy and immuno-

therapy a median of 89 weeks (rnnge of 58 to 194 weeks) after achievement of com-

plete remission vs. a matched control group of patients who received maintenance

therapy at monthly intervals, generally the same therapy that induced the remis-J sion. The objective of the late intensification study was to cure the patient by

Sadministering an intense program of therapy with new agents when the leukemia cell

g population was at a minimum. Patients were matched by age group, cell type, and

S length of remission prior to the start of late intensification therapy. There

Swere 17 patients in the matched control group and 19 in the group receiving late

intensification therapy (matched controls could not be found for two patients).

The median duration of complete remission subsequent to late intensification ther-

Sapy has not yet been reached but will be in excess of 98 weeks, only S patients

relapsing of 19. The median length of subsequent remission in the matched control.

group was 24 weeks and there is a highly significant statistical difference be-

tween the two remission curves (P<.O1). Comparing survival times hetween groups,
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16 of the 19 patients receiving late intensification treatment are still alive

and their median follow-up time is 97 weeks. The median survival time for patients
'I

in the matched control group is 56 weeks and the difference between curves was

highly statistically significant (P<.Ol). Thus, this study has demonstrated the 4

importance of a new concept in the treatment of patients with acute leukemia that

may have resulted in a cure of some patient6.

Another study by Bodey et al (1971) in patients with acute leukemia demon-

strated that patients in a protected environment (PE) receiving prophylactic anti-

biotics and chemotherapy had significantly better length of complete remission

(median of 55 weeks for PE, 26 weeks for controls), length of survival (median of

34 weeks for PE, 23 weeks for controls), and percentage of days spent with infec-

tion as related to neutrophil count than a matched control group of patients

treated outside a protected environment.

(c) Controls Selected from a Sequence of Studios-

There are many cooperative groups engaged in cancer research in the USA

who proceed from one study to the next. Generally, there is little change over

short intervals of time in institution, type of patient, criteria for diagnosis

and response, and availability of supportive therapy. In this circumstance, it

is sensible to compare results from a previous study with those of a current one.

Using patients from a previous study as controls might be misleading if a rela-

tively long time interval had elapsed between studies (say greater than 3 years)

or if it could be demonstrated that important charges had taken place with respect

to clinical investigators, type of patient, criteria for evaluation, etc. There

are about 2S cooperative groups in the United States supported by the National

Cancer Institute that proceed directly from one study to the next, have a stable

group of clinical investigators, see the same types of patients from year to year,

have the same access to supportive therapy measures and generally use the same
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criteria of resronse in successive studies. Using patients from a previous study

as controls would often be feasible for such cooperative groups.

Examples from studies conducted by the Southwest Oncology Group demonstrate

that the same treatment administered in successive studies may be expected to lead

to the same general result. In consecutive studies of previously untreated pedia-

tric patients with acute leukemia, the complete bone marrow remission rates for

patients treated with vincristine plus prednisone were 83% (72/87) in the AIinC #6

L study and 86% (237/276) in the ALinC #7 study (Lonsdale et al, 1975). In consecu-

tive studies of patients with Hodgkin's disease, the complete remission rate fol-

lowing MOPP treatment has remained very close to 80% for previously untreated

patients with stage III or IV disease.

When consecutive studies of different treatments have been conducted, re-

gression models can be utilized to test whether there are significant treatment

differences, adjusting for values of the prognostic characteristics in the succes-

sive studies. If response is the end point for analysis, stepwise logistic re-

gression procedures can be carried out to interpret the data (Cox(1970), Lee (1974))

If survival or length of response is the end point, Cox's regression model (Cox (197

may be used. An example will be given from successive studies conducted in the

Southwest Oncology Group.

Ovir the past several years, the Southwest Oncology Group (SWOG) has con-

ducted the following clinical studies in patients with adult acute leukeria: COAP

vs. UAP vs. DOAP (fronm 2/71 to 10/72); a 10-day OAP study (from 6/73 to 1/75);

and a CIAL study (from 1/75 to present). The designations of the drugs are as

follows: CaCyclophosphamide, O-Vincristine (Oncovin), AuCytosine Arabinoside, ane

P=Prednisone. The CIAL study in the remission induction phase consisted of givir

vincristine plus prednisone to all patients with less than 30,000 blasts in the
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peripheral blood. For patients with 30,000 or more blasts, paLients were random-

ized between sequential vs. simultaneous adriamycin-OAP treatment. In the first

Istudy, OAP was given by continuous infusion over a period of five days.

The complete remission rate for 5-day OAP wis 43% (39/90), that for 10-

'day OAP was 53% (92/173), and the current complete response rate for patients in

the combined groups on CIAL is 60% (70/117). The question arises, do these data

kindicate significantly improved complete remission rates by study, or is there

evidence that the types of patients on the three studies might explain the dif-
-ferences in complete remission rates?

From previous studies in adult acute leukemia, the following patient char-

iacteristics have been identified as being predictive of response: age (years),

iinfection status at start of study (0=no, lNyes), acute myelocytic leukemia (0=no,

Jlayes), hemoglobin value (gms %), and logarithm (white blood count). These five

,patient characteristics and two variables representing the linear and quadratic

Meffect of treatments were included in a logistic regression equation. The regres-

hsion equation obtained is as follows:

log j, 1.•- .1276 - .0417(Age-44.73) +.S027(Treat.linear-.101)

- .7000(Infection status-.388) - .3806(AML-.830)

÷ .0S0l(Hemoglobin-9.21) - .0597(log(WBC)-4.144)

* .0207(Treat.quadratic,.407)

;where pi is th% predicted complete remission rate based on the 7 patient characteristics.

The coefficients in the equatioii were determined by stepwise logistic

iregression (Lee(1974)) so the significance level of each entering characteristic

,can be calculated. The statistical significance level of each entering variable

was: age (P<.01), treatment linear (P<.01), infection status (P<.01), AML (Pa.18),

hemoglobin (P=.33), log WBC (P=.76) and treatment quadratic (P-.80). This analysis
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demonstrates that there is statistically significant evidence of a linear increas-

ing trend in response rate by study and that age and infection status are signi-

ficantly related to response rate.

Evidence that the five patient characteristicT, do predict complete remis-

sion rate is given in Table 1. A logistic regression equation was fit to the five

patient characteristics in the S and 10-day OAP studies (excluding treatment as a

possible characteristic). This equation is as follows:
I'!

o .02888 - .04238(Age-.44031)

- .59297(Infection status-.37) - .35854(AML-.872)

- .01431(Hemoglobin-9.155) - .0208(log(WBC)-4.127).

Table I gives the observed and predicted numbers of patients responding

on the 10-day OAP and CIAL studies. As would be expected, the relationship

between observed and predicted probability of response was excellent for the 10-

day OAP, since the equation is being re-applied to the same data from which it

was derived. Note that there is also a good relationship between observed and

predicted probability of response for patients on the CIAL study. The observed

percentages responding were higher than predicted in patients with predicted pro-

babilities under .60 and were in accord with predictions for patients with pre-

dicted probabilities over .60. Hence, there is some evidence that patients on

the CIAL study produced higher observed responses in patients with relatively

low predicted probabilities of response. When the equation was applied to the

patients from S-day OAP, the predicted complete remission rate was 52.1%; it

was 50.0% for patients on 10-day OAP, and 50.8% for CIAL. Hence, there was

strong evidence that patients on all three studies were comparable with respect

to the five patient characteristics.
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Cox's regression model was fit to the survival data from the three

studies usin$ the sam five patient characteristics and treattent variables as

in the analysis of response, Cox's model may be written as follows:

)t(t) a xp f 01 (X 1- 1). * 2(x2-"2) S.. p -7) y0 t)

where A(t) is the hazard function at time t, the O's are regression coefficients,

the x's are patient characteristics potentially related to survival, the 7's are

average values, and o0 (t) is in arbitrary hazard function when all the x's are

At their mean values. The model fit to the survival data from the three studies

is as follows:

loge - + .0319(Age-44.74) - .4269(Treat.linear-.10)

+ .4978(Infection status-.39) + .1435(log(WBC)-4.14)

- .0429(Treat.quadratic*.41) - .0097(Hemoglobin-9.21)

+ .0006(AML-.83).

The model was fit in forward stepwise fashion and the statistical sig-

nificance of adding variables at each step was as follows: age (P4.01), treatment

linear (Pz.001), infection status (P-.001), log (WBC) CP-.30), treatment quadra-

tic (P=.39), hemoglobin value (P..77) and AML (P-.99). Hence, as in the analysis

of response, age and infection status are the two characteristics most signifi-

cantly related to survival time and there is evidence of a linear trend which

indicates increasing survival time by study. Figure 1 gives the survival curves

for patients on the three studies. The median survival time for patients receiv-

ing S-day OAP was 7 weeks, that for patients receiving 10-day OAP was 38 weeks,

and the median has not yet been reached for patienwson the CIAL study. There is

evidence of a significant advantage in survival for 10-day vs. S-day OAP patients

(PN.015) and nearly significant evidence that CIAL has superior survival to 10-

day OAP (P-.059).
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These regression analyses have permitted comparison to be made among

treatment programs, adjusting for patient characteristics related to prognosis.

Based upon those analyses, one could more confidently assert that there were

real differences in response rate and survival among the three studies because

patient characteristics were adjusted for in both analyses, patients were com-

parable in the three studies with respect to predicted probability of complete

remission, and the same patient characteristics (namely, age and infection

status) were significantly related to response and survival.

4. Discussion

The point of view has been presented that rational, scientific, and

controlled clinical studies can be accomplished without randomization. In some

circumstances, patients that are comparable in prognosis can be identified in

successive studies which allow comparison between a group of patients under inves-

tigation and other groups treated in the past. Recording data which differs

significantly from that observed in the past form% the basis for new knowledge.

Confirmation of data by the same investigator and by other investigators in other

institutions provides a convincing mechanism for generating knowledge which pro-

dicts for the future.

The major reasons for preferring the non-randomized to the randomized

study are: a clinical investigator in a non-randomized study is always adminis-

* tering what he believes to be the best treatment for the disease under investi-

gation so there is no ethical dilemma, and non-randomized studies require fewer

patients and proceed more quickly so that new knowledge is gained faster.

* Randomized studies are useful if there is no basis for choosing comparable

patients treated in the past since patient characteristics related to prognosis
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are unknown. Also, such studies could be considered when there is no prelimi-

nary evidence that one treatment is substantially better than another so that

the ethical dilemma does not really arise. Thirdly, previous data will sometimes

suggest that the same treatment program be studied according to different dosages

or schedules, etc., and it is convenient to have these treatments in the same

study. fourthly, when studies are to be conducted over a very long term (say,

3-S years or more) then patients could be randomized because there was genuine

doubt that the ancillary aspects of the successive studies would be comparable.

In planning any clinical trial, there is no substitute for imaginative,

I original, and creative thought. The best clinical trials are those that have

the best treatments in them, whether randomized or not. Clinical knowledge will

advance when there has been careful analysis of past results as a basis for the

formulation of significant hypotheses to be tested in objective and scientifically

valid studies.

a j
iI
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Table I

Observed and Predicted Responses from Lozistic Regession Equation

on 10-Day OAP and CIAL Studies

CIAL 10-Day OAP

Predicted Total Observed Expected Total Observed Expected
Probability No. No.(PC) No. No. No.(PC) No.
of Response Obs. Rosponding Responding Obs. Responding Responding

0 - .19 S 0(0) .S0S 8 0(0) 1.385
.20 - .39 35 16(46) 10.075 44 13(30) 13.749 A
.40 - .S9 27 17(63) 13.489 s0 30(60) 24.878
.60 - .79 26 20(77) 18.051 so 37(74) 34.946 1
.80 -1.00 13 12(92) 10.8S7 3 3(100) 2.530

Total 106 65(61) 53.277 155 83(54) 77.488
(S0.761) (49.994) .

6"2
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EMPIRICAL COMPARISON OF
CRITERION REFERENCED MEASUREMENT MODELS

Kenneth I. Epstein
Frederick H. Steinheiser, Jr.

Army Research Institute for the
Behavioral and Social Sciences

Arlington, Virsinia

ABSTRACT. The Army needs information about how will an individual
can pe-rort the tasks necessary for him to do his job. This information
is often gathered by means of a "criterion-referenced test," a test made
up of items directly related to the job of interest. The test results
can be used in two ways. The first way is to sort individuals into two
groups, one made up of those who can perform their job satisfactorily
and the other made up of those who do not meet minimal job requirements.
A second use of the test results is to estimate the "true"capablity
of the examinees to do the task being tested. These two uses are clearly
related. If one can precisely estimate an individual's capability, then
forming the two groups is not a problem. On the other hand, it may be '
possible to effectively form the two groups without getting good esti-
mates of "true" capability.

Several psychometric models are available for grouping the indi-
viduals and/or for estimating "true" scores. For example, one may
simply calculate the proportion of items correctly answered and use that
proportion as an estimate of "true" capability. Alternatively, a binomial
error model for deriving the expression for the regression of "true" score
on observed score can be used and a "true" score calculated for each
individual. Other possible models include a Bayesian Model 1I approach

and a latent trait model such as the Ranch one parameter logistic model.
Each of these models yields a somewhat different estimate of "true"
capability for any given individual. It follows that the makeup of the
job ability groups will vary from model to model. The purpose of this
research is to empirically study the models referred to above. What
is needed is an appropriate statistic (or statistics) and research
design for comparing each model against all others given the same test
data.

1. INTRODUCTION. The purpose of this paper is to elaborate on
some technical details and to highlight specific statistical and
research problems introduced in a previous paper by one of the authors
(Epstein, 1975).

Epstein described four procedures for estimating true scores from
observed scores. The first uses the observed proportion correct as an
estimate of the true proportion correct. This procedure is straight-
forward and familiar. Hence, discussion of it will be reserved until

The views expressed in this paper are
those of the authors and do not imply

* endorsement by the U. S. Army
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the problem of comparing the models is developed. The other three pro-
cedures are 1) a binomial error model, 2) a Bayesian model, and 3) the
Reach logistic model. Each will be discussed In detail.

2. BINOMIAL ERROR MODEL. The binomial error model (Lord and
Novick, 1968, pp. 508-529) is based on the assumption that the condi-
tional distribution of observed score for given proportion correct true
score (T) Is the binomial distribution.

h(xT) - Tx (1.T)n-xI

x-O,l...n is the number of correct responses observed and n.is the total

number of items on the test.

It is assumed that items are scored dichotomously, that total score

for an examinee is the numbs, of items answered correctly, that items
are locally independent, and that items are equally diffitult for a
given examinee.

The relationship between the observed score distribution and the
underlying true score distribution can be written as follows:

*(x)l g(T) TX (1-T)n-x dT, x-Ol,...n, where ý(x) is
X0

the distribution of observed scores and g(T) is the unknown distribution
of true scores.

It can be shown that if the regression of true score on observed
score is linear then the distribution of observed score, symbolized h(x)
to distinguish this special case from the general case * (x), is
negative hypergeometric.

h(x) 2 bCn] (-n), (a)x x "- ... n,Fab n] (-b). xf .

where

a and b are parameters to be determined and

,nx] ) n(n-l)...(n-x+l),

* (a)x I a(a + l)...(a +x -1), n[O1  (a) 0  i.

The parameters, a and b, can be expressed in terms of moments of the
observed score distribution 4

a - (-1+1/a21) ux

b a -a-l+n/Q 2 1

2li n" "- 66
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The discussion thus far has outlined an internal check of the
appropriateness of this model for any given data set. That is, if
one can show adequate fit to the negative hypergeometric distribution
by the observed scores then it is reasonable to continue with this
model assuming linear regression. If adequate fit is not obtained
then either the more general nonlinear regression approach must be used
or alternative models must be identified.

It can be shown that if the observed score distribution is negative
hypergeometric, the true score distribution is either the two parameter
beta distribution, or some other distribution having identical moments
up through order n. In either case, the regression of Lrue score on
observed score is given by the linear equation

£ (Tix) = 021x + 1l-0 2 1 )ux , x a O,l,...n.

Sn n

3. BAYESIAN MODEL. The Bayesian model used to evaluate these data
is described by Lewis, Wang, and Novick (1973). The procedure transforms
the binomial test score data via an arc sine transformation. The re-
sulting score is assumed to be a sample from a normal population with its
mean value at the individual's transformed true ability. Distributions
for the prior mean and variance of the examinee group's transformed
scores are specified and posterior values calculated. Finally, the
posterior marginal distributions for the transformed scores are obtained
and estimates of individual true abilities on the original (proportion
correct) scale are calculated. The mathematical details are outlined

* below.

The Freeman-Tukey transformation for binomial data is used in
this procedure:

ej *~sin-
1  + sin- i/l ' - ,,.. h2 Rn" n1 , 91 X " 1,2,...n - the

number of correct responses. The gj are assumed to be normally dis-
Stributed with mean yj - sin-1 V11 and variance v - (4n+2)-l, where yj

is the transformed value of the ýrue proportion of correct responses, 11j.
The validity of the assumption of normality and the suitability of the
transformation for the procedures to follow can be shown to be adequate
for examinee group of at least 15 persons and for tests at least 8 items
long.

The set of transformed variables, Yj, is assumed to be a random
sample from a normal distribution with mean ur and variance Or ' wr and

*r are further assumed to be independent and to have a uniform and inverse
chi-square distribution respectively. Explicit expressions for the prior

* and posterior density functions are given in the Lewis, et al. paper.
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The desired result of an analysis of this kind is the marginal
posterior density funcLion for Yj.. Unfortunately, an explicit ex-

pression for it is not obtainable from the joint posterior probability
density function of the yj vector given the gj vector. Lewis et al.
show methods for obtaining the marginal means and variances for the
YJ using numerical integration. However, they indicate that for
large sample sizer, the conditional posterior distribution of yj given

r and the g vector provides an acceptable approximation. The con-
ditional app~oximation was used for the analysis of the data reported
in the Epstein paper.

The conditional distribution of Yj given 0r and the gj vector can
be shown to be normal with mean

E (TjI$, , g) Or gi + vg.

r+ v

and variance

var (Y ,' r ÷ - + m-lv)

r + V

where

j a 1,2.. m the number of examinees,

g - the vector of transformed scores, and

-r - the mode of r given g

r can be obtained by solving the following equation:

(m + v + 1) ,.+ [(m + 2 v + 3) v - E (gj - g.)2 A]

rr+ (v + 2) v2 -2 A), ] Sr 3, X 2 0.

In the above equation, v is the degrees ot freedom for the prior
inverse cai-square distribution of 0,, . Lewis, et al. recommend that
a value of eight be used for most practical applications. X is the
scale factor for the inverse chi-square distribution. It can be
calCL.ated by using the formula

X-v- 2
4(t+1)
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where t is interpreted as the numbtr of test items that the prior
information is considered to be equivalent to.

Once the Yj have been calculated, the last step in the procedure
is to calculate the estimates for the true proportion correct. This
i s saecomplished by applying the fo"lowing equation:

D -j (1 (+ I) sin2 yJ - 1

4. RASCII MODEL. The Rasch one parameter logistic model (Wright and
Panchapakesan, 1969) assumes that the observed response ani of person
n to item i is governed by a binomial probability function of person
ability Zn and item easiness Ei. The probability of a correct response is:

P (an - 1) ZnEi

l+ZnEi

The probability of a wrong response is:
I

P (ant 0) 1 - P (ani 1)
1+ZnEi

These equations may be combined to yield

P (ani) (ZnEi)-ni
1+ZnEi

If we let b n -log Z n and di =log Ei,

then

P (9ni) exP (ani(bn + di))

1 + exp (bn + di)

The number of correct responses to a given set of items is the only
Information needed to estimate person ability. All persons who get the
same score will bc estimated to have the same ability. Hence, in terms
of score groups, A

P (ni)= exp (8ni(bj + di)) :
I + exp (bj ÷ di)

where j - score of person n, and all persons with a score j are esti-
mated to have the same probability governing their responses to item i.
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The equations obtained when the condition of a maximum likelihood
is satisfied for the model described in the preceding equation are:

k-I
a+, (rjexp(bj* + di*)/(l+exp(bj*+di*))), i = 1,2,.. .k

k
J = (exp(bj* + di*)/(l+exp(bj* + di*))), j = 1,2,...k-1

i

where a+i = number of persons who get item i correct

_ = the total test score, an ability estimate is
obtained for each score

rj = number of persons in score group j.

bj*,di* = estimates of b. and di

The method consists of computing di* and bj * from the implicit equations
above. The equations are handled as two independent sets and solved
accordingly.

An approximation of a standard error for item estimates can be
obtained by assuming that the variance of the item estimate is due
primarily to the uncertainty in the item score a+i. To a first
approximation this gives:

V(di*) = (ýdi/Da+i )2 V(a+i)

which leads to:

k-l
V(di*) = i/ (rjexp(bj +di*)/(l+exp(bj* + di*))2).

The major contiibution to the error variance of the ability
estimate comes from the variance in scores produced by a given indi-
vidual. This part of the error variance depends upon the number of
items and their easiness range.

An approximation of the variance of the abili y estimate b* is
given by

V*(b*) = tL/C(b*)-_xp(b*)} + {i/C2 (b*)}

k
);(V(di) { exp(di_)/ (l-ý(xp (di-ýb*))2 }2)

W / BestkAvailable Copy
where C((*) ,Z (,.xp(di)/(I+exp(b*+di))

i

V(di) i :h Ih!' v:t ri ilcC of the item calibrattion di.
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The first term in the denominator of the V*(b*) equation is due to the
variance in the score, and the second term is due to the imprecision
of item calibration. The first term is always larger than the second.

5. DISCUSSION OF THE PROBLEM. One characteristic of a useful model is
that it has a small error of measurement. That is, the distribution of
estimated scores for a given true score is closely clustered around the
true score. The extent of the measurement error that can be expected
with a given model is dependent on the variance of the estimated true
score. For example, in the proportion correct model, the variance of
the estimated true proportion correct is equal to p(l-p)/n. In this
case the variance of the estimate will decrease as the number of obser-
vations increases. Thus it would seem that any level of precision could A;

be obtained by simply adding observations. Ulfortunately, for the number
of items that are usually practical on a test, the level of precision

j possible is not completely satisfactory. It would be useful to compare
the variance of the true score estimates obtained with the other models
to the proportion correct model.

Therefore the question of how to derive an expression for the
variance of the estimated true scores for the other models must be
addressed. An expression for the binomial error model has been derived.
Since the binomial error model results in a regression equation it seems
reasonable to base the derivation on the general form of the error of
estimation, 2 2 The ratio of the variance of true

E T xT 4

scores to the variance of observed scores equals the reliability co-
efficient, C2 where a is the variance of the true number

Sc - 021' c

x
correct. Since the true number correct equals the true proportion
correct times the number of items, C - nT, one may write a2 - n2 a2

c T
Substituting, o•.2 a2 /2 . The reliability of a test equals

T x
the square of the correlation between true and observed scores, c421  P 2

~xT
Hence, the variance of the estimated true score can be written

a2 x ci'21. (1 - ct 2 1 )

* C n2

* For the Bayesian and Rasch models expressions for the variances
of the estimated true scores were not derived. in the case of the
Bayesian model the output is in terms of the arc sine of the true pro-

* portion correct. While the sampling dishrlbution of the transformed
variable is known, the variance of the estimated true proportion correct
itself was not dLtermined. A similar problem exists for the Rasch model.
The sainpling distributions of the ability and item difficulty indices
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are known as veil as the explicit equation for calculating the proportion
correct from those values. But an expression for the estimated true pro-
portion correct has not been derived. In short, the problems are:
(1) For the Bayesian model, given the variance of a and the equation

Aj (1+ l/2n) sin2 Yj - 1/4n, what is the variance of Rj ; and

(2) For the Reach model given the variances of b* and d* and the equation
p (correct) - expLb* + d*) what is the variance of p?I + exp (b* + d*),

As a result of the discussion during the session a solution to the
above mathematical problems seems to be available. It was pointed ouc
that methods exist for deriving standard errors of functions of random
variables. One promising approach outlined in Kendall and Stuart (1969,
p. 231) Involves evaluating terms of a Taylor expansion. Using the
Kendall and Stuart procedure it should be possible.to derive expressions
for the standard error of measurement for each of the models. This will
allow for formal comparison of the models without real or simulated data.

The discussion then considered whether it was possible to compare
the models by obtaining an estimate of "true score" and comparing it to
the "real" true score. The problem lies in obtaining an acceptable
true score. Three approaches were considered and are expected to pro-
vide a basis for future research. The first is to base model compari-
sons on Monte Carlo simulation studies. Monte Carlu studies provide
an unambiguous true score but suffer from their lack of generalizability
to practical applications. A second approach is to define true score
as the score obtained on an instrument consisting of a large number of
items. The models would then be used to estimate the true score using
a smaller and more realistic number of items. This approach is em-
pirical and more directly oriented to practical applications where
testing time and the number of Items that may be included in an instru-
ment are limited. Although this approach suffers from the fact that
the defined true score is not error free, the amount of error is not
likely to be significant for practical purposes. The third approach
would investigate the possibility of applying Ceisser's predictive
sample reuse method (Geisser, 1975) to the comparison of the models.
Geisser's method may provide a more formal empirical approach to
model comparison than the second approach discussed above, however,
it has not been'determined whether or not it is applicable to this
research.

Four models for estimating true scores were presenred and
methods for comparing their outputs wire discussed. Procedures for
comparing the statistical properties of the models are available and
relatively straightforward. Future research will be concerned with
establishing the empirical validity of the models and their applica-
bility to solving practical measurement problems.
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NON-RANDOMIZED FACTORIAL DESZGNS CHARACTERIZED BY TREND
ELIMINATION AND A NINIMUM NUMBER OF FACTOR LEVEL CHANGES

Lea Lancaster and Steve Reynolds
U.S. Army Operational Test and Evaluation Agency

Falls Church, Virginia

ABSTRACT. An admissible set of run orders is developed for 21p
factorial designs restricted to trend elimination. The best design is then
selected from this admissible set having the minimum number of factor level
changes. The procedure is developed for p=5 where admissible sets are gen-
erated between various mixtures of linear, quadratic, and cubic trend 1
elimination and main effects, first order interactions, and second order
interactions. The number of factor level changes is used to generate the
admissible set.

1. INTRODUCTION. The design of two-level factorial experiments robust

against time trends will be illustrated in this paper. In fact designs with
zero time trends will be displayed that also keep the number of factor level
changes form run to run small. Both of these features are essential in
operational testing due to resource problems. Operational cost effectiveness
is achieved by minimiring the number of factor level changes. Soldier learn-
ing and selection is controlled by an elimination of time trends in the
experimental designs. Thus, these designs are characterized by specifying
the run orders prior to running the tests. A combinaturial technique is -

developed for generating these desirable designs.

In the planning of an experiment costs can be reduced by a multi-phase
design. The first phase would be the design of all controllable factors at
their low and high levels. Additional phases would be adaptive. That is,
the results of the first phase would be decisive for determining the design
for the additional phases. Thus, forcing the complex overall design to be
developed in the real time mode. However, the possible options at each
phase are planned and designed a priori and the results of the previous
phase trigger the design decisions for the next phase. This report will be
concerned with the first phase where p factors are varled, each at two levels.

A method for the selection of run orders spaced at equal time intervals
is developed whereby a subset of possible or admissible run order choices
is restricted to trend elimination. The desigrer then has the option to
randomize on this admissible set or else he can select the run order with a
minimum number of factor level changes. With respect to trend elimination
Figure 1 suemmarizes seven admissible subsets which will be studied In Chapter 6.
lowever, cases two and three admit empty sets nnd are included for academic
purposes.

Preding page blank
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FIGURE 1. Cases to be' Considered

, - , ,• J i e • . .. . .

"H(ighest Restriction On

,aiCase slot Order

Number Effects Interactions 2nd Order Inter

1 L L L

"3 C L -

4 C

, 5 Q L -

6 L L

7 Q
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In Figure 1 the following notation is used:

L = Linear
Q = Quadratic and linear
C - Cubic, quadratic, and linear

The different cases can be expressed in vector notation by writing each
case as (i, J, k). For example, case 5 can be expressed as (Q, L -

Utilizing this notation, the-coordinate denotes where the restriction is to
be placed and the coordinate value deontes the type of restriction. This will
become clearer in Chapter 6.

The options left to the test designer for each of the cases are very
flexible. In certain situations the choice for a run order may be dictated
by other criteria such as engineering judgement with respect to some
of the factor interactions. For example, some of the factor interactions
or treatment combinations may be null or of no importance to the experimenter.
For these situations the chosen run order can have a smaller number of factor
level changes as a tradeoff for a higher time trend for the null treatment
combinations.

The developed method is an alternative to full randomization. Some
experimenters often use blocks to gain sensitivity at the expense of full.
randomization by reducing time trends to an average variation within blocks.
Yowever, if the blocks contain many runs, then the average trend within a
block may still cause a disturbing effect. In the developed method random-
ization is restricted to the admissible set of runs whereby a price tag can
even be attached to each ordered sequence of runs in the admissible set.
SeleciAon is then based on the set with the total number of factor level
changos minimized. Procedures for partial randomization with respect to
equivalence classes is left as an option to the designer.

2. REVIEW OF PERTINENT LITERATURE. In this paper admissible sets are
restricted to zero time trends where the optimal run order is chosen which
has a minimum number of factor level chargas. Other work has restricted to
admissible sets having the minimum numbebr of factor level changes where the
optimal run oider is chosen which has a minimum (non-zero) simple or multiple
correlation with time. In this paper the admissible sets have zero simple
and multiple correlations with time. Thus far in the literature and
including this paper only two-level factors have been studied.

Addelman (1) briefly su,'..-ar.izes the state-of-the-art up to 1M'rch 1972.

Daniel and Wilcoxon (2) analyze full fractional factorial designs with
respect to linear and quadratic time trends. Their approach is extended
in this paper. They do not consider factor level changes in their r-n
orders.

Draper and Stoneman (4) -.:rc tbe fir-t to tofnsidtr the tradeoff betveen
factor level ch-tes and 1Liicar rjrtý -r:.b•. fTo•Pever, thiey look mostly
at the co7,bJnatori;:1: an- i! api . iar i tat Lhcy us °aclac'uen to

, 'It;rla their run orders.
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T!..hrt and Weeks (6) consider the selection of run orders with respect
to factor level changes plus r;,ndomization on equivalence classes.

Dickinson (3) restricts to tile Minim.um 1nmber of factor level changes
and then selects his run orders having mininum simple and multiple
correlations with linear time trends. }le uses a comrputer search technique
to find a few of the many possible run orders.

Thomas (5) considers run orders with the minimum number of factor level
changes and applies the procedure to sensitivity analysis of parameters in
large scale deterministic computer models.

3. METHOD OF DESIGN SELECTION. The method will be illustrated by
application to a 25 factorial design with N =' 32 runs. That is, a full
factorial design. The extension to designs with p > 5 will be obvious
from the illustration.

A 2P factorial design is characterized by N = 2P runs of p factors; witlh
each factor at two levels. For p - 5, Figure 2 displays the design matrix
of + l's (l's are omitted for ease of typing) in standard Yates notation
for the 32 runs and the 32 treatment combinations where "T" denotes th'-
total treatment combination which is omitted in the selection criterior.

The Yates algorithm will be used for computing polynomial trend of
factors at two levels. Daniel and Wilcoxcn (reference 1) have applied the
Yates algorit.m to the integer linear and quadratic Tchebycheff
orthogonal polynomials given in Figure 3. The Yates solution is cquivalent
to performing the matrix product between the design matrix (plus and minus
ones as given by Figure 2) and the polynomial vector. The Yates solution
iý much faster than the matrix product. The Daniel-Wilcoxon procedure is
applied here where we extend up to the (p-2)th order of the polynomial.
Further, the method developed in this paper will take into account the
number of factur level changes. In fact, it turns out that the number
of facter levr.l change:; for each factor c1,aracterizes and comnploeienhs the
standard Yates design.

in Figure 3 only the first lb numbers are arrayed. The second set
of 16 numbers is found by reflecting each column dow-nward and reversing
the sign for the linear and cubic column. For example, the 32nd number
for each column will be -31, 155, and 199.

For p = 5, Figure 4 gives the Yates solution performed on the Tchebycheff
orthogonal polynomials (Figure 3) up to the third order. In Figure 4•
the ordering of the treatment co!;tbinations has been changed from the
rtandacd Yates ordering to a more, co.,venient orderiur,, for tlie method to l'b:
developed in this paper. it turn.s out 61.•.t toii iie;. urdech-r; ,,,rouvps thc
various types of treatments with elither ati; of zeros or set; or xon-zero•.
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FIGURE 2. Standard Yates Notation'for The Design Matrix for 32 Runs

TABA CABA DABA CABA EABA CABA DABA CABA
B CCB DDB DCCB EEB ECCB EDDB DCCB

C D DDC E EEC EED EDDC
D E E EED

E

S•1 +---9- -4+-9 -9.4,- +--4..-+ +---+ +.--4. -4t4--! 2 4~ ~~-+-44-- -- 44 4+--- -- +44 441-- 4-4-- -- 4+-2t --4++-3 4-+-- -+-+ +-+- -4-4- +-+- +-+- --- +
4+4"-444-"- 4...+4 4.44...

S5 +--1- 4.---+ -441- -+4-9 -44t- -44- 4-- +--4. 4-

6 44-- 4. ---94 --4.+ -- 4+. -- ,, 4-9-- 44--
:•: •.7 "4",.- +-+- -'I-4. -44 -4- -4,-. 4-4.- +-+-

8 44-I4 +49------------ ------------ 4H- 44-9

•" , 9 4.--+. -4-1- +--4.. -44t- -4-4- +--+, -44-t- +.--4

10 4-4-- -- 4+ 4-1-- -- 44 -.. 44-- -- 4+ 44--
•:11 4-4"- -4--- .I-4- -I-.-+ -4-4 +"+4- "-+-4 4-+.-

12 4-941 -- 449 ---- 41 49

,f.. 13 +,-4 .4. 4--4 +--+ -44- -H4.- -44- -44-
* 14 4+-- 4 +-- 4.-.-- 44-- --.. ---9-.- --+-. -- 94.

15 4-+- +-+- +--+ - 4--- -4--4- ---- ---- -- 4-
16 *9*-44 4-.- 44-9-- • 4-1 44- 4I .. . . . . . . .

• ~~~17 .---4 ---#4. -- 4-- +---4- +----+ -+4-- -44-I- --- 4-

* ~~18 44-- -- 44 -- 44 4- 4--+.-4.4-
' ~19 4-4- -4--4- -- +. +-9- +-- --4-- -4--4- +-4-

20 4-- ------ --- ..-------- ----

21. +--.t. +--+ -94 -4 +-.. +--+. -'4 + 4-

22 +4-- 44-- -- 44 -- 4+ +-- 4--- -- 44 -- ++
23 +-.+ +-+- -- +-+ -- +•+ ++ t, ,--

24 -444 -+-- ----------- 4-+sI - -- -.....

S25 +.. -+-• +..+.---+ -94-4 -I----- +--- -44--

26 +1--- -4-+ ++-- .-. 4+-- -- 44 4-- -- +
27 4-4-- -4--+ -4.-- --+-4- +-4-- -4--- 4-4.- -4-4-

"28 HI.... 44+ ----.. 4.++ 4---4-, .

2 +--+4--4 +---+.4.---. -" +--4- +---4" +--' 4'-,,+S29 +-
S~30 -I-.-- 44--- 4-9-- p94-- +-9-.-- .4.9-- 4.4-- 4...---

:31. 4--+- +'-4- 4--+- 4-- - +-4- 4-4- +-+" +-+-

32 +4++ + 4+4+ 44++ 44+ HH 4
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FIGURE 3. Orthogonal Polynomials

Linear Quadratic Cubic

31 155 -899

29 125 -551

27 97 -261

25 71 -25

23 47 151

21 25 301

19 5 399

17 -13 459

15 -29 485

13 -43 481

11 -55 451

9 -65 399

7 -73 329

5 -79 245

3 -83 151

1 -85 51
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FIGURE 4. The Yates Solution

Level
Treatment Changes Linear Quadratic Cubic

A 31 32 0 1088
3 15 64 0 2144
C 7 128 0 4032
D 3 256 0 6016
9 1 512 0 4352

Al 16 0 32 0
AC 24 0 64 0
AD 28 0 128 0
As 30 0 256 0
BC 8 0 128 0
BD 12 0 256 0.
BE 14 0 512 0
CD 4 0 512 0
CE 6 0 1024 0
DR 2 0 2048 0

ABC 23 0 0 128
ABD 19 0 0 256
ABE 17 0 0 512
ACD 27 0 0 512
ACE 25 0 0 1024
ADZ 29 0 0 2048
BCD 11 0 0 1024
BCE 9 0 0 2048
BDE 13 0 0 4096
CDE 5 0 0 8192

ABCD 20 0 0 0
ABCE 22 0 0 0
ABDE 18 0 0 0
ACDE 26 0 0 0
BCDE 10 0 0 0

ABCDE 21 0 0 0
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The factor level changes are also given in Figure 4. Note that the
number of factor level changes vary from 1 to 31. The main effect for A
has the maximum number of factor level changes. For determining the number
of factor level changes for any deoign only the level changes for the main
effects are summed. Therefore, the standard Yates design is characterized
by 57 factor level changes. Thus, as the references show, the standard Yates
design is undesirable with respect to factor level changes. Also, the
standard Yates design has large correlations with time, again an undesirable
characteristic. Thus, optimal designs will be found in this paper having
admissible properties.

The time counts for each treatment are the same as the Yates solution
given in Figure 4. Note that for the standard Yates design the main effects
have zero quadratic time trend. The first order treatment interactions
have zero linear and zero cubic time trend. The second order treatment
I.nteractions have non-zero cubic time trend. The third order treatment
interactions have all zero tire trend. These observations are utilized to
construct admissible run orders for the cases given in Figure 1.

The method consists of developing a new algebra whereby each of the
* 31 treatments is denoted by the number of factor level changes. In effect

the new algebra permutes the 31 columns of Figure 2 into an optimal design.
In the next section the developmant will be presented via illustration.

In Chapter 6 admissible sets of run orders for various caces will
be constructed. In these cases whenever the designer has the option to
-andomize, it is to be understood that he can also randomize with respect
to two equivalence classes.

One equivalence class ic defined on the factor names. Thet is, the names
(for exanple, A, B, C, D, or E) can be chosen at random for the adnissibla
set. There are pi elements in this equivalence class.

A second equivalence clas is defined on thu choica of the hit.h and
low levels for one or more facvtrs. That it, the designor can choose the
plus and minus signs for each rain efftct at random. Thert arc N' el.ementA
In this equivalence class.
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4. AL.EDRA. Xultiplication of any two of the 31 treatments defined
by Fi•ur 2 entails pariwise multiplication of the 32 elements making
up each of the columns of Figure 2. The classical method of multi-
plication will be utilized, whereby numbers, rather than letters, will
be used to denote the treatment names. Theme numbers are the number
of factor level changes for that particular treatment. That is, in
Figure 4 instead of denoting the treatments by column one, column two
will be used to denote the treatments as assigned by the standard
Yates notation. As an example, the classical multiplication given as
follows:

AC * ABD - BCD

is represented in the new algebra as follows:

24 * 19 = 11

Note that this triplet can be represented in three different ways
as follows:

(1) 24 * 19 - 11

(1i) 19 * 11 - 24

(I11) 24 * 11 - 19

Figure 5 displays the 155 possible unique triplets as representation
(Iii) in a two-way table. To read off any product from Figure 5,
note that the maxium value is the row, the minimum value is the column,
:.ld the value In between is the element of the matrix or body of the
tablo. In Figure 5 all (11) or 465 different triplets could have been
eLoplayed by filling in the blanks. However, by filling in only re-
presentation (iii) as defined above a pattern emerges. On extension
to higher level desuins, this pattern can be taken into account in
t•evelopinC a recursive method.
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?igure 5. The 135 Yosuble ulttlplcations

2
3 2
4
5 4
6 45
7 7 654
8
9 8

10 8 1 91
11 10 9 a
12 0 89 10 11
13 12 9 8 17 10
14 12 13 10 11 9 8
15 14 13 12 11 10 9 8

A 16
X17 16

S18 1 16 17
21 2 6 17 78 19"" 20 16 17 18 19

M 21 20 17 16 19 18
22 20 2X 18 19 16 17
23 22 21 20 19 18 17 16
-24 16 17 18 19 20 21 22 23
25 24 17 16 19 18 21 20 23 22
26 24 25 18 19 16 17 22 23 20 21 "

127 26 25 24 19 1817 16 23 222120
28 24 25 2627 2021 2223 16171Ill19

129 28 25 24 27 26212023 2217 1619 18
30 2829 26 2124 2522 2320 2. 18 1916 17
31 30 292827 2625 2423 2221 2019 1817 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MINIMUM
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5t ZVE. In order to generate optimal or admissible designs -R A
th roedure entails development and utilization of a technique whichsh~lbe a~ld a @Love. The first stop of the slave Is farmed by
displaying the information from Figure 5 In Figure C for all 465 pos-
sible triplets. rn Figure 6 each one of the 31 treatments is determined
by any one of the corresponding 15 pairs. That is, the pairs are
choices for the two msan effects A* and 3* and the product 19 the
OhoicO for the treatment AD*. The superscript * denotes the treat-
mants belonging to a possible candidate for an optimal or admissible
design. Further, In Figure 6, the symbols "-', "1.", "Q, or "c" aretaken froi Figure* 1 and 4 and displayed tie an aiLd f~or siftitng out:

the desired restrictions for the various cases of Figure 1. TheIdea is to sequentially search down each of the 31 blocks of Figure 6

this first step of the sievet the designer will have possible candidates
for A*, B*, and AB*.

i
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Figure 6. Choices For A*, B*, and AB*

1 2

L 2 3 - 1 3
L 4 5 L 4 6
L 6 7 -Q 5 7 -

L a 9 Q L 8 10 C
C 10 11 QQ 9 U1
L 12 13 QL 12 14 L
L 14 15 -Q 13 15 -I

L 16 17 QL 16 18 C
C 18 19 Q Q 17 19 Q

C 20 21 C C 20 22 C
c 22 23 Q C 21 23 Q
L 24 25 Q L 24 26 C
C 26 27 Q Q 25 27 q
L 28 29 Q L 28 30. L

L 30 1 3 29 31 -

3 4

, 1 2 L 1 5 Q
L 4 7 - L 2 6 L
Q 5 6 L 3 7 -

L 8 11 Q L 8 '12 L
Q 9 10 C Q 9 13 Q I
L 12 15 - 1 10 14 L
Q 13 14 L Q 11 15 -
L 16 19 Q L 16 20 C
Q 17 18 c Q 17 21 C
C 20 23 Q C 18 22 C
C 21 22 C Q 19 23 Q
L 24 27 Q L 24 28 L
Q 25 26 C 25 29 Q
L 28 31 C 26 30 L
0 29 130 1 1} 12 7 131 1
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Figure 6. ýhoicea For A*, B*, and AS* (continued)

5 I
- 1 47
L 2 7 -L 2 4 L
- 3 6. L - 3 5 Q U
L 8 13 Q L 8 14 L j
Q 9 12 L Q 9 15
C 10 15 - C 10 12 L
Q 11 141 L Q 11 13 Q
L 16 21' C L 16 22 C
Q 17 20 C Q 17 23
C 18 23 Q C 18 20 C
Q 19 22 C Q 19 21 CI
L 24 29 Q L 24 30 L
Q 25 28 L Q 25 31 -
C 26 30 - C 26 28 L
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(- 1 6 "L 1
SL 2 5 Q i L 2 10 C

- 3 4 L - 3 11 Q!
L a is - L 4 12 L
Q 9 14 L Q 5 13 Q
C 10 13 Q L 6 14 L
Q 11 12 L ; - 7 15 -
L 16 23 Q J L 16 24 L

S 17 22 C Q 17 25
C is 21 C C is 26 C
Q 19 20 C Q 19 27 Q
L 24 31 - C 20 28 L
Q 25 30 L ; C 21 29 Q
C 26 29 Q C 22 30 L

2 ?7. 28 23 31 -
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ligure 6. Choices For A*, B*, and APB (continued)

• , - C ..
- 8 L - 1 11 .

L 2 11 Q L 2 L
- 3 10 C - 3 9 Q

L 4 13 Q L 4 L
Q 5 12 L Q 5 15s
L 6 15 -L 6 12 L

- 7 14 L -7 13 Q
L 16 25 Q L 16 26 C
Q 17 24 L Q 17 27 Q
C 18 27 Q C 18 24 L
Q 19 26 C 1Q 9 25 Q
C 20 29 Q C 20 30 L
C 21 28 L C 21 31 -
C 22 31 - C 22 28 L
Q 23 230 L Q 23 29

11 12

" 1 10 C - 1 13 Q
L 2 9 Q L 2 14 L
- 3 8 - 3 15 -
L 4 15 - L 4 8 L
Q 5 14 L Q 5 9 Q
L 6 13 Q L 6 r10 C
- 7 12 L - 7 11 Q
L 16 27 Q L 16 28 L
Q 17 26 C Q 17 29 Q
C 18 25 Q C 18 30 L
Q 19 24 L Q 19 31 -
C 20 31 - C 20 24 L
C 21 30 L C 21 25 Q
C 22 29 Q C 22 26 C
0L 23 27 Q
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Figure 6. Choice@ For A*, 1*, and AB* (continued)

*13 :14

- 1 12 L - 1 13 -
L 2 15 - L 2 12 L
- 3 14 L - 3 13 Q
L 4 9 Q L 4 10 C
Q 5 8 L Q 5 11 Q
L 6 11 Q L 6 a L
- 7 10 C - 7 9 Q
L 16 29 Q L 16 30 L
Q 17 28 L Q 17 31 -
C 18 31 - C 18 28 L
Q 19 30 L Q 19 29 Q
C 20 25 Q C 20 26 C
C 21 24 L C 21 27 Q
C 22 27 Q C 22 24 L

S2. j26 C 0 23 25 0

k115 16

- 14 L - 1 17
L 2 13 Q L 2 18 C

S- 3 12 L - 3 19 Q
L 4 11 Q L 4 20 C
Q 5 10 C Q 5 21 C
L 6 9 Q L 6 22 C
- 7 8 L - 7 23 Q
L 16 31 - L 8 24 L

SQ 17 30 L Q 9 25 Q
C 18 29 Q C 10 26 C
Q 19 28 L Q 11 27 Q
C 20 27 Q L 12 28 L
C 21 26 C Q 13 29 Q
C 22 25 Q L 14 30 L

S23 24 L - 15 31 -
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Figure 6. Choices For A*, B*, and AB* (continued)

- 3 1 3 17 Q
IL 4 21 C L 2 c

Q 5 20 C QQ 2
, L 6 23 L Q 20 C

- 7 22 C 7 1 C
8 25 QLS 26 C
9 24 L 9 27

C 10 27 QC 10 24
Q 12. 26 C Q 11 25. Q

L 12 29 L 12 30 L
Q 3 28 L 13 31 -

L 14 31 -L 14 28 L
15 30 1 .3 29

161

19 20

1~C
1-8 1 21 C

L 2 17 Q L 2 22 C
13 16 L - 3 23 Q

L 4 23 Q L 4 1 16 L
Q 5 22 C Q . 17 Q
L 6 21 C L 6 is C

- 7 20 C -7 19 Q
L 8 27 Q L a 28 L

*Q 9 26 C Q 9 29 Q
C 10 25 Q C 10 30 L
Q 11 24 L Q 11 31 -

L 12 31 .. L 12 24 L
IQ 13 30 L Q 13 25

14 29 L 14 26 C

- 151 28 L 23 2
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Figure 6. Choices For A*, B*v AB* (continued)

21 2

- 3 -2-21 20 C 1 23
L 2 23 L 2 20 C
- 3 22 C - 3 21 C
L 4 17 Q L 4 18 C
Q 5 16 L Q 5 19 Q
L 6 19 Q L 6 16 L

I- 1 C 7 17 Q
L 8 29 - L 8 30 L
Q 9 28 L Q 31 -

C 10 31 - C 10 28 L
Q 11 30 L Q 11 29 Q
L 12 25 Q L 12 26 C
Q 13 24 L Q 13 27 Q
L 14 27 Q L 14 24 L

- 15 26 C -25 0

S23 
24

- ~0L
- 1 22 . - 1 25 Q
L 2 21 C L 2 26 C

- 3 20 C - 3 27 Q
L 4 19 Q L 4 28 L
Q 5 18 C Q 5 29 Q
L 6 17 Q L 6 30 L

- 7 16 L -7 31 -

L a 31 -L 8 16 L
Q 9 30 L Q 9 17 Q
C 10 29 Q C 10 18 C
Q 11 28 L Q 11 19 Q
L 12 27 Q L 12 20 C
Q 13 26 C Q 13 21 C
L 14 25 Q L 14 *23 C

15 24 L~ 1 15 23 Q
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Figure 6. Choices For A*, 3*0 and AD* (continued)

25 26

-1 24 L 1 27

-3 26 C -3 23
L 4 29 4 30 L
q 1 26 L 5 31

LL 6 31 -L 6 28 L
17 30 7 29 Q

L 8 17 L 8 18 C
Q 9 16 L 9 19 Q

C 10 19 QC 10 16 L
U is 1 C Q 11 17 Q

L 12 21 C L 12 22 C

Q 13 20 C Q 13 23 Q
L 14 23 L 14 20 C~=~ 15 22 &. 15 21 1C

27 28

1 26 C 1 29 Q
2 25 Q L 2 30 L

3 24 L 3 31
L 4 31 L 4 24 L

Q 5 30 L Q 5 25 0
L6 29 Q L 6 26 C
-7 28 L -7 27 Q
L8 19 Q L a 20 C

Q 9 18 C Q9 21 C
C 10 17 QC 1C. 22 C

Q 11 16 L Q 11 23 Q

Q 13 22 C Q 13 17123QL126L
L 14 21 C L 14 18 15 2 1 jC.

lII
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Figure 6. Choices For A*, B*, and AB* (continued)

29 30 -

- 1 28 L - 1 31 -

L 2 31 - L 2 28 L
- 3 30 L - 3 29 Q
L 4 25 Q L 4 26 CO 5 24 L Q 3 27 Q;

SL 6 27 Q L 6 24 L -
7 26 C - 7 25 Q

L 8 21 C L 8 22 C
L Q 9 20 C Q 9 23 Q

C 10 23 Q C 10 20 C
Q 11 22 C Q 11 21 C
L 12 17 Q L 12 18 C
Q 13 16 L Q 13 19 Q
L 14 19 Q L 14 16 L

15 I-- I15 C17 0

k- 31

- 1 30 L
L 2 29 Q
- 3 28 L
L 4 27 Q
Q 5 26 C
L 6 25 Q
- 7 24 L
L 8 23 Q
Q 9 22 C
C 10 21 C
Q 11 20 C
L 12 19 Q
Q 13 18 C
L 14 17 Q
- 15 16 .L
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The second step of the sie@ve is concerned with finding the main
effect C* given candidates A*, B*, and AB*. Since the main effects

* Ican be relabeled with respect to equivalence classes, the choice for
C* can be subjected to the following constraints

A* < B* < C*

Now to choose C*, suppose that A* and B* are fixed at "5" and
"9" respectively, then, for this example, Figure 7 displays 28 possible

choices for C*. In Figure 7, for any choice of C*, the remaining
three treatments in that same row are automatically determined and
assigned as shown in Figure 8, for example, for the second row of
liguee 7. That is, the treatments in each row of Figure 7 for C*
can be permuted, but only these seven rows can be defined.
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S~Figure 7. Choices For C*

, A* B* AB* " C*

5 9 12 10 15 3 6

5 9 12 11 14 2 7 • i

5 9 12 13 8 4 1 . -

5 9 12 16 21 25 28

5 9 12 17 20 24 29

5 9 12 18 - 23 27 30

]4

S5 9 12 19 22 26 31
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l-itre 8. Choica for AC*, C*, And ABC*

A! SO All* C* AC* IC* ADC-
•-- - - - -

5 9 1 11 14 2 7

5 9 12 14 11 7 2

5 9 12 2 7 11 14

5 9 12 7 2 14 11
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in epplying the sieve, the last two rows of Figure 8 can be crossed
out, for the example, due to the ordering constraint on these three
candidates for the main effects. This ordering constraint will also
?*Wuca the set of choices Xiven in Figure 7. Case restrictions will
foreher reduce the set of choices. Therefore, as the sequential search
for candidates progresses, or an A* and B* increase in value, the set
of possilole choices for each new 0* decreases. Usually, the possiblilities
need not be exhaustive as shown by the cases studied In Chapter 6.

At this stage of the sieve, for each possible candidate for an
admissible design, it turns out that seven out of the 31 possible
treatments are now fixed. The third step of the sieve is concerned
with finding admissible choices for D* and P. To continue the sequen-
tial search, the ordering constraint Is extended as foLlows:

At < P < C* < DA ( 3*

Suppose that the candidate under consideration at this step is given
by the first row of Figure 8. The new candidates will be found from
the blocks of Figure 6. For this eample, the beat candidate for D*
ls "13". Further, on checking the 13th block of Figure 6 and crossing
out the seven.pairs corresponding to the seven fixed treatments, the
beat candidate for V Is "16". These two candidate blocks are repeated
from Figure 6 as Figure 9 but without any case restrictions. Also In
figure 9 the seven treatments for this example are circled. As a check
on the validity of the chosen design, note that in Figure 9, each
block has seven pairs that are eliminated. Case restrictions would
eliminate more pairs. Due to the ordering constraint and since the sun
of the factor level chanes* for the main effects Is to be minimized,
only one pair of D* and R* treatnents need be found for each candidate
up to this step of the sieve. However, the three main effects from
step 2 will not have a sum that strictly increases or decreases as
the sequential search progresses.

After all admissible designs are sufficiently searched and dis-
played the designer selects the optimal design with respect to the
particular case under consideration. However, due to the ordering
criterion and the fixed choice of the plus and minus signs in Figure 2,
the above selection is up to an equivalence clase. Therefore, at this
point, the designer has the option to randomize.
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Figure 9. Choices For D* And P*

13 16

15 18

3 3 14

4 20 2i

:• ~8 (5 21

6 Q) 6 22
10 23

16 29 8 24

17 28 90 25

18 31 10 26

"19 30 27

20 25 1 28

21 24 13 29

22 27 1 $0

23 26 15 31
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4 44

In order to be absolutely sure that the selected design is a
valid desip, the plus and minus signs of the main effects can be placed
back through the standard Yates notation via the factor level changes
as shown in ]Figure 10. In Figure 10 the design to be validated 1i given
by the last row whi.e the next to lest row is the correspondinS Yates
notation from Figure 2. Here, a plus sign denotes a value of one and
a minus sign denotes a value of sero. Thus, the Yates count is deter-
slog by writing the binary count of the five digit mimber of each
row plus one. The Yates count for a valid design should include all
numbers from 1 to 32.
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flure 10. To Vo::date The Selected Design

Yates
j L* B* C* D* 3* Count

+ + + - + 30""- +" --
+ + 11

. . + - + 6+ - + - + 22

+ + . + 2
+. + .+ + + - 23ii+ + + - 29

+ - - + + 20
+ - + - - 21
+ + - + + 28
- + - + + 12

- - 7 + -
- + - - + 10
+ + - - + 26
+ - + + - 23
+ - - - s 18
+ + + + - 31
- 4.+ + + - 15

S. . .. . + 2
+ + - 2 2
+ - + + + 24
- - + + + 8
- + - - - 9
- + + + + 16

b -m -~ - - 1

+ . . . .- 17
+ + + + + 32

NcDM ADDS ABCD ABCDE AMCE

10 18 20 21 22
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6. CASE STUD. Figure 1 summarizes seven cases with various time trend
restrictions. Figure 11 shows how these cases or oets are Included In
each other. The case represented by (L, -, -) has a large numberi of
elements or admissible designs as well as the case with no restrictions.
Therefore# these two cases will not be analyzed but are shown In Figure 11.
to complete the picture. As more restrictions are placed on the design,,
or an more arrows in Figure 11 are traced, the total number of factor
level changee increases and the trade-off becomes a manager ial decision.
Note that Figure 11 Is not drawn to any scale.

FIGUR 11. Inclusion of Cases

No Rst Ition

Case 4

(CO -i

Cas 3 ae2Cs
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The logic for generating the admissible sets for the various cases
has been progra•med in FORTRAN. Table look-ups, "IF" statements, and "DO"
loops simulate the sieve, the order constraints, and the restrictions
and drive thi sequential *arch.

CASI 1. (L. L. Q. for this case the 5 treatments denoted "-" in
-- G7 '6mnet be"aesfuated as third or fourth order treatments. There-

fore, up to an equivalence class, this set could have, at the most, 6
admissible designs. If 4 of the 5 possible third order Interactions
(treatments) are fixed then the fifth one Is determined. Therefore, there
are only 5 admissible designs and these five designs are displayed in Figure 12.
in Figure 12 the 5 admissible designs are generated as folloes. The first
4 treatments are fixed, thus determining the next 11 treatments. The
treatments in line number 16 are fixed next, thus determinina the rest of
the treatments. The sum given in the last row characterises each design
and is found by adding the factor level changes or the values denoting
the 5 main effects.
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FIGURE 12. All Admissible Designs for Case 1

Line Do- Ian__
Number Tretment 1 '2 3 4 I

1 AICDI* 7 3 15 1 31
2 A.CD* 3 1 3 3 3S3 ABLE* 1 7 7 7 7

4 ADDS* 31 31 31 31 1 [4
- ABC* 5 5 11 5 27
6 ABD* 27 29 19 29 29
7 ABE* 25 27 23 25 25
8 CDE* 26 26 20 26 26
9 AD* 29 25 27 27 5 4

10 CD* 30 24 24 24 6 -1S11 CXC 28 30 28 28 28 ,
12 DZ* 2 .6 4 4 4
13 C* 24 28 16 30 30 I
14 D* 6 4 8 6 24
15 X* 4 2 12 2 28

16 ACDXC i5 15 1 15 15
17 3C 8 12 14 14 16
18 us* 12 14 2 12 12
19 3D* 14 8 6 8 8
20 BC* 16 16 30 16 14
21 BDE* 10 10 10 10 20
22 ICE* 20 18 18 18 18
23 BCD* 22 20 22 22 22
24 A* 21 21 21 21 21
25 BCDE* 18 22 26 20 10
26 AE* 17 23 25 23 9
27 AD* 19 17 29 19 19
28 AC* 13 9 5 11 11
29 ADE* 23 19 17 17 17
30 ACEC 9 11 9 9 23
31 ACD* 11 13 13 13 19

Sum 63 67 71 73 119
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CASE 2.- (Q. This case admits an empty set as shown as follows.
Utilizing the first step of the seive, Figure 13 arrays the possible candidates
&- givan by Figure 6 where each treatment of the triplet has an assigned
Q or C. Using the ordering constraint, these triplets have been ordered
in Figure 13. Howeve.', this ordering can be reversed if necessary. But
the second step of thd saive cannot be filled, since 6 of the 7 required
treatments for each candidate at this step must be taken from Figure 13.
Thus admitting an empty set.

FIGURE 13. Candidates for Case 2 from Step 1 of the gleve

Triplets for A*, B*,
and AS*

5 17 20
5 18 23
5 19 22
9 18 27
9 19 26
9 20 29

10 17 27
10 19 25
10 23 29
11 17 26
11 18 25
11 22 29
13 20 25
13 22 27
13 23 27

-CASE 3. ( _L.- This case also admits an empty set. This can
be shown in a sl.tlilar fashion as shown in case 2 or by looking at the
5 treatments mal:ing up case 4 and putting on the further rastktirtion on
the first order interactions. To repeat the proof from case 2,
Figure 14 arrays the possible candidates from the first stop of the
sieve. Note that in Figure 14 there are only 5 possible candidates for
the main effects and the following product violates any possible designa:

10 * 18 * 20 *' 22 m 26

That is, ABCD* and E* must be different, Thus showing that the sPt for
case 3 is also empty.
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FIGURE 14. Candidates for Case 3 from Step 1 of The Sieve

A* P AP

20 22 2
16 22 416 20 6

18 26 8
22 26 12
20 26 14
10 26 16
10 18 24
10 22 28
10 20 30

CAS 4. (C. For this case Figure 19 arrays the possible
candidates from the first step of the sieve. Here there are only 6
possible candidates for the main effects, but one of these is inadmissible
due to the folloving product violation:

10 * 18 * 26 m 2

20 * 22 - 2

This product violation is found an execution of steps 2 and 3 of the sieve.
Figure 16 arrays the main effects and the first order interactions for
the 5 admissible designs for this case along with the sum of the factor
level changes. Figure 16 also shows that the set for case 3 is empty, since
each design has at least one first order interaction that violates the
further restriction imposed by going from case 4 to case 3.

1
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TIGM 15. Candidates for Case 4 from Stop 1 of The Sieve

B* AB*

"20 21 1
20 22 2
21 22 2
18 22 4
18 20 6
18 21 7
18 26 8
22 26 12
20 26 14
21 26 15
10 26 16
10 18 24
10 22 28
10 20 30
10 21 31

ligure 16. All Possible Designs for Case 4

Desian 1 2 3 4 5
+•A* 10 10 10 10 In •
SB* is 18 18 20 20
/-C* 20 20 21 21 21 •
SD* 21 21 22 22 .22
SE* 22 26 26 26 26 •

AB* 24 24 24 30 6
AC* 30 30 31 31 7
AD* 31 31 28 28 4
AE* 28 16 16 16 8
BC* 6 6 7 1 1
BD* 7 7 4 2 2

j BE* 4 8 8 14 14
CD* 1 1 3 3 3
CE* 2 14 15 15 isSDE* 3 15 112 12 12 •

91 95. 97 199 1 07
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Case 5. (Q, 1, -). This case admits a very large set of admissible
designs. Figure 17 displays some of these designs which were generated
in a fraction of a second on the Univac 1108 computer along with the
total sum of factor level changes. The desians with ivis lt,%q than
70 were chosen to illustrate the possibilities.

Figure 17. Some Possible Designs for Case 5

-A* I S C* - D* * SUM-
5 9 11 13 17 5.
5 9 11 13 19 57
5 9 11 13 21 59
5 9 11 13 23 61
5 9 11 13 25 63
5 9 11 13 27 65
5 9 11 13 29 67
5 9 11 17 21 63
5 9 11 17 23 65
5 9 11 17 25 67
5 9 11 17 27 69
5 9 11 19 21 65
5 9 11 19 23 67
5 9 11 19 25 69
5 9 13 17 19 63
5 9 13 17 23 67
S 9 13 19 21 67
5 11 13 17 19 65

11 13 17 21 67

Case 6. (L, L, -). This case also admits a very large set of
admissible designs, a set much larger than the set for case 5. Figure 18
displays some of these designs which were again generated In a fraction
of a second on the Univar 1108 computer. The designs with sums less
than 56 were chosen to illustrate the possibilities. The design with
a sun of 43 is optimal. For comperitive purposes the standard Yates
design has a sum of 57 plus non-zero time counts in the main effects.
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Figure 18. Some Possible Designs for Case 6

A* B* C* D* 1* $UK
2 4 8 16 21 31
2 4 8 16 25 35
2 4 8 17 20 51
2 4 8 17 24 55
2 4 8 19 22 55
2 4 9 12 16 43
2 4 9 12 17 44
2 4 9 12 18 45
2 4 9 12 20 47
2 4 9 12 21 48
2 4 9 12 23 50
2 4 9 12 24 51
2 4 9 12 25 52
2 4 9 12 26 53
2 4 9 12 28 55
2 4 9 16 21 52
2 4 9 16 24 55
2 4 9 17 20 52
5 9 11 13 16 54

-9 11 13 17 55
5 8 11 14 .16 51 5 1

Case 7. (0 o. ,This case is included for comparison purposes
Although It's much larger than cases 4 and 5, It turns out that It
has the same optimal design at case 5 as given by the first design
of Figure 17,

To compare these cases further, the optimal design for the came
ezpressed by (L, -, -) Is given as (2, 4, 5, 8, 16) with a sun of 35.
Further, the case or met of designs having no restrictions Is given as
(1, 2, 4, 8, 16) with a sum of 31 or N-1 as shown by the references.
However, on restricting to the standard Yates notation, as this paper
has done, this Is the only possible design up to an equivalence class,
with a sun of 31. On relaxing the standard Yates restriction, as the
references do, many designs can be found with a sum of 31, but with

1on-sero time counts.
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7. APPLICATIONS. The application of the techniques presented in
this paper to operational testing can best be shown by giving an example.
For that purpose, an experimental design for an operational test of the
hypothetical ZAP anti-tank weapou will be constructed.

After analysis of the system to be tested, five factors are chosen
to be included in the design, each factor being taken at two levels,
thus giving a 25 factorial experiment. The factors chosen and their
associated levels are shown in Figure 19.

The importance of eliminating time trends in such a test can easily
be seen. With so few factors being controlled, there exist the possi-
bility that some uncontrolled and unmeasured factor is Influencing test
results. Such factors as weather, crew learning, and crew morale can,
and usually do, change with time through the test.

Another consideration in designing this test is the ease of execu-

E tion of the design. Quite often a penalty must be paid in time, money,
and perhaps test validity for each factor level change which is made.
For instance, changing the visability factor between day and night too
often would greatly slow the test execution and destroy any attempt
to portray a realistic combat scenario, as it would permit only a small
number of firings during daylight and then delay further testing until
night in order to achieve the desired factor level change. Similarly
it may be difiicult and time consuming to frequently move the test part-
icipants and test team from one location to another in order to achieve
changes in the terrain factor. As a third example, frequent changes
in the weapon factor may confuse the test participant and prevent him
from performing as well as he might if he were allowed to stay with
one weapon. For example, one weapon may require the soldier to lead
a moving target while the other weapon does not. If the test participant
is frequently switching back and forth, he may forget and lead when
he should not or not lead when he should. Even if he does remember
and does the right thing, he may not do it as proficiently as if he
had been able to con~centrate on developing a single skill instead of
two.

With the foregoing constraints in mind, we can use the techniques
presented in this paper to design a good test of our hypothetical anti-
tank system.

If it is felt desirable to strongly protect the mnin effects, we
could choose case five which eliminates linear, and quadratic time trciXz:
for the main effects and linear time trends for the first order interactions.
To construct our design we select one of the admissible run orders found
for case five, as sven in Figure 17. This selec.ion can either be nede
randomly or the one with the rnirinuun rcfita nu:iber of factor lsvel changes
can be choson. For our example, let us choose thn design which rminimizos
the factor level changes. We can ther ristruct our experimental des':.;n
by going back to the standard Yatep•j •ation and wr~t1nr- out the levul changes
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Figure 19. Operational Test of the ZAP Anti-tank Weapon

FACTOR.S LEVELS,

. Weapon - Baseline (present
anti-tank weapon)

- Candidate (ZAP)

* Range - Short

- Long

* Visibility - Night

-Day

". Target Mode - Stationary

- Moving

"* Terrain - Open

- Forrest

110



for the five factors as defined by the level change numbers given in
Figure 17. This design is given in Figure 20. As with the selection
9f a design from the set of admissible run orders, the assignment of
the five factors to the five columns Can be done either randomly or by
ordering the factors based on which factor should have the fewest level
changes and which could have more level changes.

Suppose after examining Figure 20 we feel this design is not desirable
because the number of factor level changes for visiblility, weapon, and
terrain are excessive for the reasons discussed in paragraph 4 of this
chapter. One alternative would be to relax the constraints on the elimina-
tion of higher order time trends. We could decide to select a design
which eliminates only linear time trends for the main effects, and first
order interactions. For this we can choose case six. Figure 18 gives
admissible run orders for case six. Going through the same procedure
as for case five, we come up with the design given in Figure 21.

Given that this design is determined to be staisfactory, it only
remains to randomly assign a plus or minus to the actual level namec
for each factor. For ease of planning the conduct of the test, it may
prove convenient to display the design information of Figure 21 in a
more conventional format as shown in Figure 22 where the number in each
cell gives the order of execution of each test event in filling out
the full factorial design.
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Figure 20. Came 5 Candidate Design for the ZAP Test

A 539 c 11 D 13 3 17
TERRAIN VISIBILITY WEAPON TOT MODE RANGE

44 4

3- + + + +

7 + + +~

5 + + + -

10 + + + +
71 + + +

14+ - + + +

175 - + +
18 6 - +

19 + + +

21--+ + +

22 - + +
23 -4-

24 - + -- +

25 -+ +-+

26 + +
27 -- +

28 -- + +

29 + - -+

30 +- -

31 + + ++
32 + + +++
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Figure 21. Case 6 Candidate Design for the ZAP Test

A 2 5 4 C 9 1 12 1 16
TERRAIN VISIBILITY WEWPON TOT MODE IANGE

+1 + + +

3 + + + - -

4 + + + + +

"8 + 4 +

9 .... +
10 ..... :
11 - - + + -
12 - - + + .

13 -+ + -+
14 ... + + m-

-15 -+ -+-
16 - + - + +

17 -+ + + +
16 - + + +
19 - + -

20 - + +

21 - - + +
* 22 - - - +

23 - + - -

24 - - + - +

"25 + - + - +
26 + - + - -

* 27 + - - +
28 + - - + +

29 + + - - +
30 + + - -

31 + + + +
32 + + + + +
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8. FUTURE WORK. The computer lo:! for recursively generating
factorial designs having more than five factors would be desirable.
Admissible designs with a mix of two and three level factors would be
more realistic. Of further conc:-- woulA be optimal fractional factorial
designa.
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A METHOD OF ESTIMATING ERROR VARIANCE IN A NON-REPLICATED
EXPERIMENT BY PARTITIONING AN INTERACTION TERM INTO

NON-ADDITIVITY AND ERROR

1st Lieutenant L. Douglas Peirce
Instructor, School of Logistics ScienceArmy Lolistics Management Center h•Aort Lee, Virginia

H. Gill Hilton
Chairman, Department of Statistics

Brigham Young University
Provo, Utah

ABSTRACT. A method of estimating error variance in a
non-replicated experiment by separating an interaction term
into sums of squares of non-additivity and sums of squares
pertaining to error was examined. A sequential procedure
to test individual degrees of freedom of the interaction term
for non-additivity was introduced. Five test statistics that
could be applied to the sequential procedure are given. The
critical values needed for each of the test statistics for

0.05 and 0.15, for 10, 20, and 30 degrees of freedom re-spectively in the term being tested, and for three stages of

the sequential procedure were estimated by Monte Carlo methods.

The five test statistics were compared as to their power
and ability to estimate error variance when non-additive in-
dividual sums of squares were combined with individual sums
of squares that estimated error variance. The results and
recommendations as to which is the best test statistic are
given. The data indicated that using a higher level of sig-
nificance than 0.1S would better estimate error variance.

1. INTRODUCTION. Frequently, due to the nature of an
experiment or through poor planning, a design is formed with-
out replication. When this happens the experimenter has no
estimate of experimental error in his data. This situation
is illustrated in Table 1 taken from Fisher (1951). Since
each entry in this table represents a single observation,
there is no way to estimate experimental error. The usual
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solution to this problem is to assume an additive model (no
interaction) and to use the residual sum of squares as an
estimate of error. In a model with two main effects this
means renaming the two-way interaction as error. For the
data in Table 1 the three-way interaction alone may be pooled
into error or possibly the three-way and one or both of the
two-way interactions may be pooled depending upon the experi-
ment and the analyst. Having an estimate of the error the
experimenter may now be able to test other terms in the model
that weren't testable before pooling.

The problem with this procedure is that some of the
pooled sums of squares may have estimated interaction and
not error. If this happens, the estimate of the error will
be too large giving the experimenter a less sensitive test
of other terms in the model.

How, then, can it be determined if the mean square of
an interaction term estimates error, interaction, or both?
This paper examines five test statistics that are designed
to answer this question. It will be restricted to fixed
models with one observation per cell. The techniques devel-
oped can be applied to any or all interaction terms in any
n-way model.

Using the Modified Abbreviated Doolittle (MAD) computer
routine developed by Bryce (1970), the terms of a fixed
model can be broken into single degree of freedom sums of
squares. These single degree of freedom sums of squares
form the building blocks of the five test statistics. The
individual sums of squares of an interaction term are ranked
and sequentially tested one at a time starting with the
largest until non-significance is declared. At this point,
the significant single degree of freedom sums of squares
are pooled together as the part estimating interaction and
the rest of the sums of squares and their corresponding
degrees of freedom are pooled into error which is hopefully
free of interaction.

This paper will compare the ability to find interaction
when present, or power, of the five test statistics and the
ability of each to estimate C2 .
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2. TEST PROCEDURE. The expected mean square of any
interaction terem-can e broken into two parts. The first
part contains the error variance, o2, and the second part
contains the sum of the remaining different possible vari-
ance components. The number of terms in the second part
would depend on the ANOVA model. If interaction exists,
then the mean square of an interaction term estimates
the sum of the two parts of the expected mean square; i.e.,
02 plus the rest of the terms. However, if interaction
does not exist, the mean square estimates only the error
variance. If for a given model interaction is not present,
it would be appropriate to pool the sums of squares and
degrees of freedom associated with the interaction terms
into the error term.

The sum of squares and n degrees of freedom of a term
in the model can be partitioned into n sums of squares,
each associated with one degree of freedom. If an inter-
action term is so partitioned, the resulting single degree
of freedom sums of squares estimate either error variance
or interaction. It would be desirable to extract the por-
tion that estimates error only, thus giving an estimate of
0 2 and making it possible to test other terms in the model.
This procedure assumes that some of the partitioned single
degree of freedom sums of squares estimate 02 only and that
not all estimate interaction.

The steps for the proposed sequential procedure for
testing any interaction term and estimation of o2 are:

1. Separate the term with n degrees of freedom into

n sums of squares containing one degree of freedom each.

2. Rank the n sums of squares.

3. Apply one of the test statistics to the largest
sum of squares.

4. Check for significance using the appropriate values
in the table for a and stage. (Stage is the number of the
sequential test that is being performed on the individual
sums of squares of an interaction term. For example, stage
one is the test of the largest individual sum of squares,
stage two the second largest and so on.)
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5. If significance is declared, return to step three
using the same test statistic and significance level to
test the next largest sum of squares. If no significance
is found, proceed to step six.

6. Pool the silnificant sums of squares and degrees
of freedom into one nteraction term.

7. Pool the remaining sums of squares with their
"appropriate degrees of freedom into error.

3. TIST STATISTICS. The proposed test statistics will
be labeled F1, F2, F3, P4, and F5 for convenience and the sum
of squares of a single degree of freedom interaction term will
be written as Si where ($S < S2 < < Sn). The stage in
the sequential test procedure will be denoted by r and n will
denote the degrees of freedom in the interaction term before
testing.

The test statistics are:

n Sr j

Fl * i-n-r+l rn-r

jal n-r

Sn- r+l
F2 a

F35 Sn-r+l

n
E S

jii

n
r£ Sj

SF4 i-n-r+l r
n

... jul .,..

FS n-r+l
n-r

Z Sj
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Fl could be described as the sums of squares having
been declared significant plus the test sum of squares
(the individual sum of squares being tested for significance)
averaged and divided by the average of the remaining sums of
squares. F2 is the test sum of squares devided by the small-
est sum of squares. F3 is the test sum of squares divided
by the total sums of squares of the interaction term. F4 is
a composite of Fl and F3. FS is the numerator of F3 divided
by the sum of the sums of squares less than the test sum of
squares.

4. GENERATION OF CRITICAL VALUES. The sequential test
procedure was developed to test the hypothesis of no inter-
action present in the single degree of freedom sum of squares
of any interaction term. This would mean that each of the
single degree of freedom interaction sum of squares estimate
error and follow a central chi-square distribution with one
degree of freedom. The null hypothesis for the test proce-
fure at the first stage could be written

SH : "l x2. • - xn- 0
0

where Ai represents the non-centrality parameter of the chi-
square associated with each of the ordered single degrees of
freedom. If the test proceeds to the second stage t e null
hypothesis would be

Ho: X a . . - 0

and so on at other stages of the test.

Under the null hypothesis it is possible to generatethe critical values for each test statistic using one degree
of freedom central chi-squares. Two parameters affect the
shape of the distribution of each test statistic; the stage
of the test and the number of degrees of freedom in the
interaction term under consideration. Using an electronic
computer, the distributions of each of the test statistics
were simulated for three stages and interaction terms of ten,
twenty, and thirty degrees of freedom. The upper portion
of the distributions were ordered and the five and fifteen
percent points were found thereby giving an estimate of the
0.05 and 0.15 critical values under the null hypothesis.

The single degree of freedom chi-squares were formed
by generating a standard normal value and squaring it. Each
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standard normal was generated by the Box-Muller (1958)
transformation using uniform values generated by the McGill
Random Number Generator Package, supplied by McGill Univer-
sity. This method of generating standard normals was
found satisfactory by Thomas (1975).

A more detailed explanation of hew the critical values
were found for stage one and ten degrees of freedom of
interaction will now be given. Ten one-degree of freedom
central chi-aquares were generated and ordered. A value for
each of the five test statistics was calculated and saved.
This process was repeated ten thousand Limes. The upper
portion of the ten thousand values for F1 was ordered and the
five percent and fifteen percent points were found. This
gave the estimated critical values for a stage one test of
an interaction term containing ten degrees of freedom using
F1 as a test statistic. The critical values were found in
the same manner for F2, F3, F4, and FS. This process was
repeated for twenty and thirty degrees of freedom in inter-
action.

Stage two critical values for ten degrees of freedom
interaction terms and a a 0.05 were estimated by again
generating values for the test statistics in the same manner
as above. If generated numbers of the test statistics exceeded
the 0.05 critical values with ten degrees of freedom for inter-
action at stage one, the test statistic for stage two was
formed and saved. This was repeated until two thousand values
at stage two were accumulated. The upper portion was ranked
and the estimate of the 0.05 critical value for stage two was
found. The same procedure was followed to find the table
values for a = 0.15 and so on for twenty and thirty degrees
of freedom of interaction.

The calculation of stage three critical values is an

extension of the stage two procedure. Critical values under
the null hypothesis were calculated and if they exceeded the
appropriate critical values of both stage one and stage two
the test statistic for stage three was formed and saved until
two thousand were accumulated. They were then ordered as be-
fore and the estimates of the five percent and fifteen percent
critical values were found. The complete table of critical
values generated is found in Table 2. The critical values
do not extend past stage three because of the length of com-
puter time that would be necessary to generate stage four
critical values.
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TABLE 2

CRITICAL VALUES FOR Fl, F2,

F3, F4, and F5

n is the total degrees of freedom associated with the
interaction term being tested.

a is the level of significance.

Stage

Sn a ..

2 3

.05 13.7882 35.6391 108.8423i0.s 9.0107 19,6191 10 2067W 1-2.0 037 20.3695 32461o0
Fl 20 .15 8.9826 13.8655 19.9743

O- MT T1•944 17.4037 23.5462
30 : 9.1645 12.7221 15.9907

.05 84376.4338 14924046.1125 4099285578.06Z9
10 .15 8119.5734 190156.7131 4723313.6463

2 05 421750.6897 157984650.5641 42188251906.4520
F2 20 •15 4273.3229 1462966.2431 51961752.0038

- 05 10i60700. 3502 3 "307 7131T- 9714024F -U z 6b.5100
30 .15 108S24.4S12 S00742L."73 181702308•679

• 05 .6051 .2182 .0911
10 .15 .5003 .2283 .1112

- 05 .3872 ..2.. .1369
20 - :1 .3210 .2093 .1357

F3 - 05 T29I8 .1986 . 1389
30 15 .2401 :1788 .1279
10 05 •501T •4495 .3263
10 ,103 .4153 .3174

F4 23872 .3474 .2838
F4 20 :15 .3210 .3032 .2-S97

S05 .2918 2771 .2412
30 .15 .2401 .2380 @2133
- 0 1.5231 1.7930 2.116810 .15 .9985 1.1222 1.3075

FS 20• 0 .6365 .6677 .7151
:.15 4741 .4849 .5207

30 05 .4129 .4315 .4443
s15 .3177 .3190 .3302
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5. CHOICE OF a. It may be desirable to make the test
for interaction at a relatively small alpha rather than a
large one. A small a under H,: A• A * A n a
may lead to an inflated estimate of 02 by wsy. o-futhe so-
quential test because when no significance is found the
test procedure is halted and the error sum of squares is
calculated. A test using a small alpha may not find inter-
action when it is present thus leading to an inflated esti-
mate of 02 . Therefore, any tests of other factors in the
model using the inflated error would be conservative. With
this in mind, critical values for alpha equal to 0.05 and
0.15 were estimated.

It should be noted that the level of significance must
remain the same at all stages of the test when using the
critical values developed here. For example, it is not
appropriate to test at stage one using a - 0.15 and after
finding significance to test at stage two using a - 0.05.

6. GENERATION OF POWER DATA. Power in a sequential
test Is an elusive concept. OFr this reason, power at stage
one is defined to be the probability of rejecting the null
hypothesis, H,: A1 a X, a • a . " An a 0, given the null
hypothesis is false. Piwer at stage two is the probability
of rejecting the null hypothesis, H0 : A1 a A2  • • • n-l O
given the null hypothesis is false.

Data generated to compare the power of the five test
statistics were divided into two cases. Case one consisted
of generating ten, twenty, or thirty standard normal de-
viates, adding a single non-centrality parameter, Xi, to
one of these at random, and squaring each. The result was
one non-central and (n-l) central chi-squares. The sequen-
tial test procedure was tiunperformed using one of the test
statistics at a level of significance a. This was repeated
one thousand times adding the same non-centrality parameter,
•4, to a new set of standard normal deviates and keeping a
r cord of the number of times significance was declared. An
estimate of power for the test statistic, at a, n degrees of
freedom for interaction, and Ai at stage one was calculated
by dividing the number of times significance was declared
by one thousand. The above process was repeated for every
possible combination of test statistics, levels of signi-
ficance, number of degrees of freedom for interaction, and
non-centrality parameters. The non-centrality parameters are
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A1 * 1.5 X 2.S, 13 " 3.5, and A = 4.5. The sequential
test for poier in case one was not larried past the first
stage* The experiment was repeated once to form an estimate
of experimental error.

A test for power at both stage one and stage two was
performed in case two data. n random standard normal devi-
ates were again generated and non-centrality parameters
were added to two randomly selected standard normals before

* squaring. The sequential test was applied and the process
repeated one thousand times keeping count of the total num-
ber of times significance was declared. Each time signi-
ficance was found the test would proceed to stage two to
test for significance and a tally was kept of the number of
times the null hypothesis was rejected.

For a certain a, test statistic, n degrees of freedom
of interaction, and set of non-centrality parameters, power
at stage one was the number of times significance was found
divided by one thousand while power at stage two equaled A
the number of times the null hypothesis was rejected at
stage two divided by the total number of tests made. (The
total number of tests made at stage two was the number of
times significance was declared at stage one.)

The above power for case two was calculated indepen-
dently for each combination of degrees of freedom of inter-
action, test statistics, levels of significance, and pairs
of non-centraliiy parameters. As in case one, the experiment
was replicated on-e. There were ten different pairings of
i,tXi added to form non-central chi-squares. These are

listel in Table 3.

Table 3

Pairings of Non-centrality Parameters
Added for Case Two Power

Al X2

1.5 1.5
2.S 2.5
3.5 3.5
4.5 4.5
1.5 2.5
1.5 3.5
1.5 4.5
2.5 3.5
2.5 4.S
3.5 4.5
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7. GENERATION OF MEAN SQUARE ERROR DATA. As the above
procedure, or power was being performe dat for an analysis
of the ability ok the test statistics to estimate a2 was
also being compiled.

As each set of ten, twenty, or thirty chi-squares was
generated for case one data, the test procedure would check
for significance at different stages until none was found.
It would then tally the sum of squares and degrees of freedom
to be pooled into error. This would proceed until all one
thousand sets were tested. The estimate of 02 was then cal-
culated by dividing the total sums of squares pooled into
error by the pooled degrees of freedom. If significance was
found at each of the first three stages in any of the one
thousand sets, (n-3) degrees of freedom and the sums of
squares not declared significant were added to error. Since
these data were calculated simultaneously with the power
there are two independent observations for all combinations
of test stati~ticsI degrees of freedom in interaction, non-
centralities, and levels of significance. The case one mean
square error data were calculated for five I, four being
the same as in the power analysis and the fifXth being equal
to zero.

Mean square error data for case two were generated simul-
taneously with case two power data. As both a stage one
power test and stage two power test were performed for case
two data, mean square error data were also collected at both

g the stage one power test and stage two power test. Caseo• two mean square error data will be labeled and discussed in•
terms of stage of power test. This avoids the problem of
thinking of the MSE data as "stage one MSE" and "stage two
MSE" which carries the wrong connotation since both errors
are estimated using the three-stage sequential procedure.

Mean square error data at stage one power test %sre
collected as follows, The sequential (up to three stages)
procedure was applied to each set of n single degree of free-
dom interaction sum of squares. If non-significance occurred
at stage one all n sums of squares were pooled into the error
estimate. When significance was declared at stage one but
not at stage two (n - 1) sums of squares were pooled into
the error estimate and with significance at stages one and
two but not at stage three (n - 2) sums of squares were pooled
into the error estimate. It was decided if significance was
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found at all three stages that the remaining (a - 3) sums
of squares would be pooled into error. Thus, each of the
one thousand sets of n sums of squares contributed some-
"thing to the estimate of error.

Mean square data at stage two power test ie collected
in a different manner than at stage one power test. The
same three stage sequentiaý yrocedure was applied, but only
to those sets of n sums of squares which were declared sig-
nificant at the stage one power test. If non-significance

;L wwas observed at the stage one power test, then the set of
n sums of squares did not become a part of the error estimate
at the stage two power test. Thus fewer than one thousand
sets of n sums of squares were used in the stage two power
test estimate. One might say that the mean square error
calculated at stage two power test is "adjusted" for those
cases where non-significance was found at stage one power test.

This procedure was repeated for each combination of
n, F, a, and pairings of Aj, Aj. The entire process was
replicated so that two indepenAent estimates of error were
obtained at each design point.

The mean square error data at stage one power test are
the values of interest in this paper. They will be larger
than the mean square error values calculated at stage two
power test because the sums of squares and degrees of freedom
are pooled into the mean square error at stage two power test
only if significance was found at stage one power test. This
means that the largest, individual sum of squares that is not
declared significant at stage one is never pooled into the
mean square error at stage two power test. If one decided
to estimate 02 only when significance was found at the first
stage of the sequential procedure then the values of mean
square error at stage two power test would give a picture of
the results one might expect from th2 test statistics. How-
ever, if one wanted an estimate of oz independent of signi-
ficance being declared at stage one of the sequential pro-
cedure the mean square error data generated at stage one power
test one will indicate which is the best test statistic.

8. METHOD OP ANALYSIS OP DATA. Analysis of variance
was used to analyze the data generated for case one power.
A four-way factorial model complete with all interactions
was formed using degrees of freedom of interaction (n), test
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statistic (F), non-centrality parameter (A), and signifi-
cance level,(), for the four main effects. Degrees of free-
don of interaction had three levels (ten, twenty, and thirty),
test statistics had four levels (Fl, F2, P3, and PS), non-
centrality parameters had four levels (1.5, 2.5, 3.5, and
4.5), and alpha had two levels (0.OS and O.IS). P4 was left
out of the analysis in case one because power wasn't extended
past stage one and at stage one F3 and P4 are the sane test
statistic. The main effects for this model and for all models
in this paper were considered fixed.

The dependent variable in the power analysis is a pro-ortion. In case one data one thousand independent tests
or power were mrde for each combination of n, F, a, and A.

The proportion was formed by dividing the number of times
the null hypothesis wis rejected by the total number of testsmade. ,

Because of the range of non-centralities used to ge irate
the data, it is possible that the assumption of homogene:as
variance in each cell is violated. For this reason, the arc-
sine transformation, as described by Snedecor and Cochran
(1967), was used on the data but vetr little difference was
found between the analysis of the ra data and that of the
transformed data so the analysis of ,he raw data was used.

Case two power data •wreanalyzed using a five-way fac-
torial model. The five main effects were degrees of free-
dom for interaction (ten, twenty, and thirty), alpha (0.05
and 0.15) test statistic (Fl, F2, F3, R4, and FS), non-

Scentralitles (the ten pairs in Table 3), and stage (stage
one and stage two). The number of binomial results going
into each observation of case two power data varied with
stage. At stage one, one thousand binomial results went
into each observation while at stage two the number of bino-
mial results that went into each observation were the number
of times significance was declared out of the one thousand
trials at stage one. This is because the sequential test
procedure doesn't proceed to stage two unless significance
occurs at stage one. Analysis was performed on the raw
data and also a weighted arc-sine transformation of the data,
weighted by the number of binomial results making up each
observation. Very little difference was found in the results
between the two analyses and so only the analysis of the raw
data will be considered here.
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Before describing the method of analyzing the mean

square error data, consideration of what would be the best
estimate of mean square error b a test statistic in this
paper will be made. Ideally, the test statistic would
identify any single degree of freedom sums of squares that
have interaction in them and pool into error only the sums
of squares that truly estimate error. Each single degree
of freedom that estimates error is a central chi-square
with one degree of freedom and with expected value equal
to one. Since the expectation of a sum of central chi-
squares is equal to the sum of their degrees of freedom,
the expected value of the pooled sum of squares of error
when all interactions have been extracted by the test sta-
tistic is equal to the pooled degrees of freedom. The
expected mean square error would then be equal to one. If
the test statistic fails to remove all of the interaction
the expected mean square would be greater than one. If the
test statistic using the sequential procedure pools only
part of the single degree of freedom sums of squares that
estimate U2 into error the resulting mean square error
would be less than one on the average. This is because the
sums of squares of error left in interaction would be the
largest sums of squares, not just any sums of squares se-
lected at random, leaving the smaller for error thus de-
creasing the expected value of mean square error. Hence,
for the data generated here, the ideal test statistic would
yield an estimate of error having an expected value equal
to one.

Analysis of variance was also used to analyze the mean
square error data of case one and case two. Although
heterogeneity of variance exists, since the observ: 'Lons
are central or non-central chi-squares, Scheffe" (i,59)
notes that if an analysis is balanced the heterogeneity of
variance has little consequence. This was seen in the
analysis of the raw and transformed power data. The analysis
of case one and case two mean square error data was performed
on the untransformed dependent variable using the error es-
timate produced by replication to test terms in the model.

The ANOVA model for case one and case two mean square
error were the same as for power with three exceptions. F4
was added to the levels of the main effect for test statis-
tics in case one since it will estimate mean square error *1
differently than F3. Zero was added to the levels of the
main effect for non-centralities to investigate the ability
of the test statistic to estimate U2 when no interaction is
present.
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The authors of this paper subscribe to the philosophy
that when it is not desirable or possible to control main
effects in an experiment it is proper to test for signi-
ficance among the levels of main effects in the presence
of interaction. This also applies tc the testing of low
ordered interactions in the rresence of significant higher
ordered interactions. The exalyst must realize, however,
that the main effects and lovw ordered interactions have been
averaged over all other factors in the model and any inter-
pretation of significance must be viewed in this light.

The analysis of the power and mean square error data I
will be discussed a case at a time instea of discussing

power completely and then mean square error.

9. RESULTS AND DISCUSSION OF CASE ONE DATA. Table 4
is the analysis of variance table for case one power data
and Table S is the table for case one mean square error
data. Significance was found for almost every term.

The first thing to be considered is alpha. Figure 1
contains graphs of power and mean square error for the F 1 -
by a interaction.

The graph of power in Figure 1 indicates that the power I
is better using a larger alpha which is not surprising,
but the graph of mean square error shows that a better es-
timate of mean square error is obtained using a - 0.15
since the line for a - 0.15 is closer to one than that for
a 0.0S. Table 5 shows significance for main effect a
which indicates that using a a 0.15 for case one data gives
a better estimate of mean square error.

Now consider Figure 2 which contains graphs for the
power and mean square error of the F by A by a - 0.15
interaction term.

There is no significant difference between the p,,wer
curves of Fl, F3, F4, and FS so power offers no help as to
which test statistic is the best other than that the power
of F2 is lacking. The graph of mean square error in Figure
2 shows that F2 also lacks in ability to estimate mean
square error. There is no practical difference between the
points of Fl, F3, F4, and FS for mean square error at X w 0,1.5, 2.5. At X * 3.5,F3 is significantly higher than the
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TABLE 4

ANOVA Table for Case One Power Data

-. Source DY MS F

n 2 0.0030 23.5678

F 3 1.3084 9997.0462

nF 6 0.0009 7.3491

1 1.0141 7748.2736

na 2 0.0026 20.5578

pa 3 0.0001 0.8867*

nFa 6 0.0002 1.7236*

S3 3.0563 23351.5011

nX 6 0.0010 8.1844

FA 9 0.2475 1891.2634

nFX 18 0.0004 3.5115

a 3 0.0097 74.6679

n% 6 0.0002 2.1278'

FA 9 0.0019 15.0068

nFaA 18 0.0001 1.1544*

ERROR 96 0.0001

* Indicates that the term was not significant at the
.OS level. No * by the F value indicates significance was
declared at the .05 level.
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Figure 1. Power vs. a - 0.05 and a = 0. 1.5 and NISE vs.

a ; 0.05 and a 0.15 at Case One for Fl, F2, F3, F4,

and F5
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TABLE 5

ANOVA Table for Case One Mean Square Error Data

Source DF mS F*

n 2 1.1613 4570.3185

F 4 1.2276 4831.2999

nF 8 0.0866 341.0213

S1 0.7622 2999.7058

no 2 0.075S 299.0747

Fa 4 0.001C 4.2709

nFa 8 0.0005 2.1856

S4 0,8472 3334.1864

nX 8 0.1453 571.9092

FX 16 0.3739 1471.8028

nFX 32 0.0295 116.1555

ox 4 0.0517 203.4774

na 8 0.0077 30.3502

Fax 16 0.0026 10.4372

nFm 32 0.0005 2.0556

ERROR 150 0.0002

* All tests are significant at the .05 level.
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other three and at X - 4.5, F5 separates from F1 and F4.
At A * 4.5 F1 and F4 underestimate error while F3 over-
estimates error and FS estimates error exactly.

The problem with F2 is that it will find significance
if the smallest sum of squares is sufficiently small with-
out regard to the size of the largest sum of squares. Even
if the largest sum of squares is large it will not be de-
clared significant unless the smallest sum of squares is
sufficiently small. Thus, F2 has poor power and greatly
overestimates mean square error.

At A m 4.5, F3 estimates a2 to be 1.023. This is sig-

nificantly different, using Scheffe*'s test at a a 0.05,
compared to the FS estimate of 1.000. As X gets large, F3
tends to overestimate a4. This is due to the presence of
the non-central chi-square in the denominator of F3.

Fl and F4 have the same numerator

* n
Si

ion-r~l r

which leads to their underestimation of a2 at A X 4.5. The
test for mean square error in case one only goes as far as
stage three. Any single degree of freedom sum of squares
declared significant at stage one will remain in the numera-
tor for the stage two test. One large single degree of
freedom if interaction sum of squares could easily cause a
type one error at stage two because of the inflated numera-
tor of the test statistic. This would lead to an underes-
timation of 02.

To further investigate Fl and F4 consider the graph of
n by F by a a 0.15 interaction on mean square error which
is shown in Figure 3.

The points of Fl and F4 for n - 30 are lower than one.
As the number of individual sums of squares gets larger the
probability of a large central chi-square being present
increases. The numerators of Fl and F4 will be inflated
at stage two with one significant individual sum of squares
and a large central chi-square present. Thus a type one
error at stage two and possibly at stage three could occur.
This would keep large central chi-squares from being pooled
into error and would cause an underestimate of a 2 .
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Figure 3. MSE vs. n ; 10, n = 20, and n 30 at Case
One for Fl, F2, F3, P4, nrid 1`5
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6 and 7 contain the analysis of variance tables for case

two power and mean square error data respectively. Signi-
ficance was found for every term in both tables.

To find the better a for case two consider Figure 4
which is the F by a interaction on power and F by a by
stage one power test of interaction on mean square error.

As in case one a - 0.15 estimates mean square error
better than a w 0.0S but Figure 4 shows that the a w 0.15
curve isn't as close to one as it was in case one data.
This suggests that when two individual sum of squares
associated with interaction are present, using a higher a
will better estimate o2. Figure 4 also shows that F2 has
Spoor power and greatly overestimates mean square error.
Por hese reasons P2 will be dropped from any further dis-
Scussion.
cusFigure 4 also shows that F1 and F4 have the best power

of the five test statistics. This is further illustrated
by Figure 5, a graph of F by X at a a 0.15 interaction on
power.

The power of Fl, F3, F4, and FS are very close when
pairs of A are equal, but when the pairs of A become un-
equal the pattern changes. As the difference between the
non-centralities gets larger the difference in power between
F1 and F4 compared to FS and F3 also spreads. The reason
for this becomes obvious after seeing figures 6 and 7.
Figure 6, which is F by X by a - 0.15 by stage one on
power, shows no practical difference 4n power between Fl,
F3, F4, and FS, but Figure 7, which is F by X by a w 0.15
by stage two on power, shows wide differences in power.

The differences in Figure 5 originate in Figure 7 since
Figures 6 and 7 make up Figure 5. Figure 7 is power at
stage two or rejecting H : AI -A,0 = * 

1n-l - 0 when
it is false. The real difference in power between FS com-
pared with F1 and F4 begins as the pairs of non-centralities
start to spread. F1 and F4 have better power because the
significant sum of squares at stage one is still in the
numerator and when it combines with the smaller non-centra-
lity significance is still found. At the same time FS and
F3 are testing the smaller non-centrality alone and not
finding it significant as often as Fl and F4. As the smaller
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TABLE 6

ANOVA Table for Case Two Power Data

Source DF MS F*

S4.7802 15862.9815
nF 8 0.1806 599.S040

9.3725 31102.2565
no 2 0.0699 231.9816
Fa 4 0.0824 273.6274 4
nFa 8 0.0035 11.7148

9 2.8400 9424.7329
nx 18 0.1017 337.8058
FA 36 0.1657 S50.1733
nFA 72 0.0078 25.8975

9X 9 0.0291 96.6522
na 18 0.0093 31.1496
Fo 36 0.0026 8.6435
nFaq 72 0.0007 2.5451

t r 1 0.6061 21922.1602
nr 2 0.2618 868.7970
Fr 4 0.3465 1149.9805
nFor 8 0.0427 141.7871
or 1 0.0652 216.6943
nor 2 0.0072 23.9867,
For 4 0.0349 116.1258
nFor 8 0.0027 8.9653
Ar 9 0.6665 2211.8393
nkr 18 0.0260 86.2968
F~r 36 0.0540 179.3832
nF~r 72 0.0026 8.8321
akr 9 0.0042 14.1705
noXr 18 0.0021 7.1075
FaXr 36 0.0024 8.209S
nFaXr 72 0.0004 1.5963
ERROR 600 0.0003

t r represents stage of power test
* Each term is significant at the .05 level.
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TABLE 7

ANOVA Table for Case Two Mean
Square Error Data

Source DF MS F*

n 2 37.5888 62218.3820
P 4 8.5351 14127.7110
nF8 0.2126 3S1.9482
a 1 6.5986 10922.3722

no2 0.8028 1328.8303
PC 4 0.0343 56.9299
nFo 8 0.0106 17,6582

9 6.7756 11215.3054
nx 18 2.3379 3869.8933
PX 36 0.3266 540.7006
nFX 72 0.0078 13.0703
ax 9 0.3890 643.9728
na 18 0.0964 159.6656
FaA 36 0.0086 14.3329
nFoA 72 0.0036 *.9810

t r 1 126.5534 209475.7356
"nr 7 30.6301 50700.0991
Fr 4 0.5413 896.1425
nFr 8 0.0734 1Z1.5168
or 1 5.2837 8745.8149
For 4 0.0951 157.5172
nFar 8 0.0332 55.0646
Af 9 1.36S6 2260.4472
nr 18 1.0383 1718.7646
F)r 36 0.1123 186.0435
nF)r 72 0.0308 51.0854
*Xr 9 0.1382 228.7546
naXr 18 0.0425 70.5036
FaXr 36 0.0046 7.7365
nFaXr 72 0.0027 A-6175
ERROR 600 0.0006

t r represents stage

* Each term is significant at the .5 stage.
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Figure 4. Power vs. a - 0.05 and a - 0.15 and MSE
vs. a OA0.0 and a - 0.15 at Stage One Power Test and
Case Two for Fl, F2, F3, F4, and FS.
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non-centrallty gets larger the power of F3 and FS also
increases. This property of Fl and F4 builds their power
but may not help their ability to estimate mean square error.
Figure 8 is a graph of the F by A by a a 0.15 by stage one
power test interaction on mean square error.

The only three places that mean square error of Fl and
SP4 are ignificantly closer to one than the mean square
error of S are where the non-centralities are (1.5, 4.S),
(2.5, 4.5), and (4.S, 4.S). This is due to the numerators
of Fl and F4 being inflated with 4.5 while FS is testing
1.5, 2.5, and 4.5 alone. This may be fine for a test using
a a 0.15, but if a a 0.25 were being used, the structure of
F1 and F4 could cause them to seriously underestimate al,
whereas FS would not have an inflated numerator nor inflated
denominator as F3. This is what happened when testing data
with one non-centrality of 4.5 present in case one as illus-
trated in Figure 2. Figure 4 contains the points in Figure
8 averaged over non-centrality. From Figure 4 at a - 0.15
the average mean square error values are 1.401 for FS, 1.391
for F4, and 1.396 for F1. These differences can be attri-
buted to the differences observed in Figure 8 at pointswhere the added non-centralities were (1.5, 4.5), (2.5, 4.5),
and (4.5, 4.5). The differences in the ability of Fl, F4,
and FS to estimate error variance averaged over everything
except a and stage one power test are of no practical impor-
tance.

Figure 9 is analogous to Figure 3 in case one. It is
the n by F by a a 0.15 by stage one power test interaction
for mean square error.

At n = 10 the value of FS is significantly closer to one
than F1 and F4. But as the sample size increases to n - 20
and n a 30, F1 and F4 are significantly closer to one than
FS. This is because a large central chi-square is more likely
to be present as the sample size increases. And the inflated
numerators of Fl and F4 tend to declare a portion of the large
central chi-squares significant whereas FS does not. If a
large o were being used, Fl and F4 may underestimate error
whereas FS may avoid this problem because of its structure.

11. ANALYSIS OF DATA IN TABLE I USING SEQUENTIAL
PROCEDURE. Table 8 is an analysis of variance table"of the
data contained in Table 1.
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Figure 9. MVSE vs. n-10, n-20, and n-30 at a .5
Stage One Power Test, and Case Two for Fl, F2, F3,

F4, and FS.
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TABLE 8

ANOVA Table for Data in Table 1

Source DF SS MS

A 5 21221.0 4244.2

B 1 3798.5 3798.S

AB 5 6893.9 1378.8

C 4 S310.0 1327.5

AC 20 4433.0 221.7

BC 4 291.8 73.0

ABC 20 2784,z 139.2

ERROR 0 0.0 0.0

TOTAL 59 44732.4

The AC and ABC interaction terms were partitioned into
single degrees of freedom sums of squares and the sequen-
tial procedure using Fl, F3, F4, and FS was applied to the
data. No indication of interaction was found using a - 0.15
in either the AC or ABC term. Thus, both could be pooled
into error givin an estimate of o2 equal to 180.43, however
interaction could be present in most or all of the single
degree of freedom sums of squares of AC and ABC, which may
lead to a type two error using the sequential procedure.

12. CONCULSIONS. Based on the results of this paper,
F1 and P4 may be as good a test statistic as FS if the re-
maining sums of squares are pooled into error wheR signifi-
cance is declared at stage three. FS estimates a better
in case one data then Fl and F4 but in case two data there
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is no practical difference. If, however, more complete
tables were available (higher significance levels and
critical values for more than three stages) the authors
would recommend FS as the best of the five test statistics.
F5 avoids the pitfalls of Fl and F4 which would probably
manifest themselves in much greater detail if critical
values for more stages and larger a were available.

As far as level of significance is concerned 0.15 is
ricommended over 0.05 because of the better estimate of
a given. As the number of individual sums of squares
associated with interajtion increases a larger value of a
will better estimate a . This can be seen by comparing
Figure 1 with Figure 4. The results indicate that with a
higher a, perhaps 0.25, o2 would be estimated with lessbias than at a - 0.1S.

These conclusions can only be strictly applied to the
data analyzed in this paper. Any extension to three or
more individual sums of squares containing interaction
without further research is speculation.
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PLANNING QUANTAL RESPONSE TESTS FOR ORDNANCE
DEVICES: THE TWO-POINT STRATEGY

R. E. Little
School of Engineering

The University of Michigan
Dearborn, Michigan

ABSTRACT. This paper presents a small sample strategy
that should prove to be useful in predicting high reliability
(or high safety) for ordnanoe devices. The recommended
"two-point" strategy was developed by the author for analogous

* use in estimating fatigue reliability.

Briefly, the "two-point" strategy incorporates the well-
known up-and-down (Bruceton) strategy in its first stage
to generate two (nonzero, nonunity probability) points along
the assumed response distribution curve. Then, in its second
stage, the strategy allocates the remaining specimens to the
two corresponding stimulus levels such that the variance of
the point estimate pertaining to the reliability (safety)
of interest is minimized.

in essence, the issue in to find the specimen allocations
which minimize the variance associated with extrapolation
along the fitted response distribution to a point remote
to the median. Optimally, this minimization requires testing
certain specific proportions of the available specimens at

*l carefully selected specific stimulus levels.

1. INTRODUCTION. The sensitivity of explosive devices
to shock loading cannot be measured directly. Rather, the
explosive device must be subjected to some arbitrary shock

* • loading and if the given device explodes we know that the
* • imposed shock loading exceeded its tolerance to shock loading.

On the other hand, if the given device does not explode, then
we know that the imposed shock loading did not exceed its
tolerance to shock loading. Conducting similar shuck loading
tests at various (stimulus) levels generates the following
quantal response test program:
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|V

Number
Stimulus Level Number of Specimens Responding

(e.g., drop height) Tested (e.g., exploding)a l nI R1

*2 n2 2

* 5

k nk k

The problem of interest herein is how to select si and
ni such that we obtain the most precise estimate of the critical
stimulus level S corresponding to a very low (high) probability

p
of responding p, e.g., 0.001 or even 0.00001 (0.999 or even
0.99999). Specifically we shall describe our two-point test
program and estimation method [1,2]. The two-point strategy

*requires considerably fewer specimens than current techniques
such as the run down method [3].

2. OPTIMAL REGRESSION BACKGROUND. The folle,..ing discussion
is intended to serve as background material for the subsequent
summary of the two-point sti...tegy.

2.1. Simple Linear Regression Example. Consider the
problem of most precise estimation of the slope 0 for the
simple linear model

Y = a + Ox + c (1)
A

Assuming a homoscedastic variance a 2, the variance of 0 is
given by the expression

2
i • B) Fni(xi _ )2 2

Elementary analysis (or intuition) shows the a 2 takes on
(B)

its minimum value when: (a) only two levels of xi are used
in testing, (b) these levels are spaced as widely apart as
practical, and (c) ntotal/ 2 specimens are tested at each of

the two xi levels, where ntotal is the fixed number of
specimens available for testing.
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This elementary example illustrates the minimum variance
strategy in planning test programs. Namely, select the
stimulus levels and allocate the test specimens such that we
minimize the variance of some estimate of direct interest.
This minimum variance strategy may be applied to models with
heteroscedastic variances and with time and/or cost constraints
[2].

2.2. Optimal Regression Derivations for Linear Response
Curves. We shall now discuss minimum variance estimation of
a point on the linear response curve

y (p)= a + 0 (3)

in which a refers to the stimulus level and p - F(y) is
the distribution of interest (e.g., normal, logistic, extreme
value-smallest). The heteroscedastic binomial varianceassociated with sampling at a given stimulus level is

(p) - pq/n (4)

in which p is the true probability of responding, q a (1 - p),
and n is the number of specimens tested at the given stimulus
level.

A

We may now use the variance expression for p to obtain
a variance expression for the variate y, using the simple
relation (aX) = a 2 o2 (X) and the assumed distribution p - F(y)to obtain dp/dy, viz.,

Cy 2 (dy/dp) 2 [pq/n (5)

Now by analogy with the simple linear regression example
above, we conduct response tests at just two stimulus levels.
Specifically, we test n1 specimens at stimulus level s* and
n2 specimens at stimulus level s2, where ni + n2 = ntetsI is

Sspecified prior to testing. We assume that rI specimens
respond during the tests at sI and r 2 respond at s2. Hence,
the respective proportions responding are p1 , rl/nl and

IA

r2 /n 2 . These Pi values are then used to compute the
corresponding yi values using the relationship Yi = F-pi)'
in which p = F(y) is the distribution function assumed for
the response curve.
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The response curve of interest appears in Figure 1.
Two parameter distributions plot as a straight line on
appropriate probability paper, passing through the two
Spoints [(¥y, a 1) (Y2 1 S2 )1" Hence,

A A A

ad• - Y Y2 81 )/(s 2 - 81) (6)
•.: and

A A A

(2 - y1 )/(s 2 - e1) (7)

Then, for any point along the line, say (y0' a0 we_ write

A A A 
Ayl2 Y2 Y2 - yl

YA + Ony~ + 2? O a+I~0 2 1 8l + 2 " al

and, since y and y2 are inaependent, we see that
A 2 A( - 9

2A 2 2A a(YO) 2 2A

- lyll (y 2 ) (Y2 )

in which
AA

1¥0o) 1ac;0 )( - 08 2 -W s and - ( - a- Sol/I2 W s*i (10)

3(yl(y
2)

Next, we substitute a2 
A and a 2) into (9) and introduce

the notation-1 2

n = )1/0 (11)

to obtain

2(s . a 0)2 (sI 2
02A 12 0 +anW + n2 w2 + (12)

Our problem now is to minimize (12) by appropriate selection
of nI, n2 , a,, and s
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First, consider optimum allocation of n1 and n2 for

given values of s, and *2. Substitute n- ntotal - n2
into (12), and set the derivative of (12) with respect to

n2 equal to sere. We thus obtain the expression

2A

1 (62 - O-- -[2 (13)1n 82 - 8l (ntotal n2) wlw n w2 ] 211-.

Equation (13) is satisfied when

2 T 2 0) 2 2 - Y
n2 81  - 0 1 1 114O

where the plus sIgn pertains to extrapolation and the
minus sign pertains to interpolation.

Substituting (14) back into (12) gives (after some
algebra)

2A 1o01 1 8 0) 2

;0 ntotal(52 512 A ±1V

"1 (2 YO) 2I

ntotal(Y2 - Yl)' / 2

where again the plus sign pertains to extrapolation and
the minus sign pertains to interpolation. This variance
expression may now be minimized by appropriate selection
of yl and Y2"

Taking the derivatives of (15) with respect to Yl
and Y2 and equating these derivatives simultaneously to

zero shows that the optimum values of yl and Y2 are indepen-

dent of the value of y0 of specific interest. However,

because of the complex nature of the w, p (w, y) relationship,
the optimum values must be determined numerically, refer to
Table 1.
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Distribution Optimum y Optimm p

Yl Y2 Pl P2
Normal -1.575 +1.575 0.058 0.942
Logistic -2.399 +2.399 0.083 0.917
Extrme Value -2.073 +1.269 0.118 0.971+
Ssmallest

Table 1. Optimum y and I values for minimum variance
estimation of yO"

NOTEM Remarkably the optimum valugs also pertainto minimum variance estimation of O, but thecorresponding optimal allocations differ. theopt mum allocations for miniuq variance estimation
of B satisfy n1 /n 2 = (w2/wl) 1 fz.

Variance Ratio

Value of yo (Normal Distribution)

- 1.575 1.000

- 2.0 1.16

- 3.0 4.6

- 4.0 63.5

Table 2. Ratio of transformed binomial variance 02` for
(yO)"all ntotal tests conducted at stimulus level so#

to the optimal regression variance a2(y0 These

example results pertain to the normal distribution.
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2.2.1. DiscUSsion of Results. It is helpful in under-
standing the results summarized in Equation (15) and Table 1
to plot w versus p. Refer to Figure 2. Here we see that the
weight w approaches zero as p approaches zero or one (viz.,
as y approaches minus infinity or plus infinity). This w,
p (w, y) relationship indicates that it we attempt to separate

1 and a2 too widely, the variance of yo increases because
w in the denominator of Equation (15).approaches zero. On the
other hand, if we do not separate a1 and a2 enough, then the
term (2 - a1)2 in the denominator is too small. Thus, there

are unique values of a1 and 82 (independent of no) which

minimize (15) -- not too far apart and not too close together. i

It is also helpful in understanding the optimal (weighted)
regression results herein to compare the variances of ý0
associated with optimal regression and with direct testing
at the single stimulus level ao corresponding to y0, refer
to Table 2. Here we see that optimal regression is much more
efficient than direct testing. The reason for the increased
efficiency is essentially that, as evident in Figure 2, direct
testing at very low or very high p values is extremely
inefficient because the weights w are almost zero (i.e., the
transformed binomial variability is so large). The optimal
regression strategy, on the other hand, allocates specimens
to stimulus levels where the weights are not only much higher
than the weights associated with direct testing at extreme
valves of p, but it also minimizeR the increase in the variance
of y0 associated with extrapolation. It is clear from the
results summarized in Table 2 that optimal regression is
remarkably suited to the problem of estimating stimulus levels
corresponding to very high and to very low probability of
response.

2.2.2. Application to Ordnance Problems. The optimum
values of p in Table I are too close to zero and one to have
direct application in ordnance problems. The difficulty lies
in selecting s1 and a2 such that we do not obtain all response
or all non-responses at either a1 or *2* If either situation
occurs, we cannot establish the two y values required to
specify the fitted distribution. Thus, to use the optimal
regression results Oirectly, we require very accurate initial
estimates of a and 8. This requirement is of course quite
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impractical. Thus, we must modify the optimal regression
strategy to make sure that we can always establish the two
required y values. The modified procedure is termed the
two-point strategy.

3. THE TWO-POINT STRATEGY. There are two versions of
the two-point strategy, one for small samples, say fifty
specimens or less, and one for large samples, say one
hundred or more specimens.

3.1. Small Sam8le Procedure. The small sample procedure
is as follows: (1) conduct the beginning portion of the test
program using the up-and-down strategy illustrated in Figure 3,
(2) change over to testing at only two stimulus levels al and

A

82 as soon as two finite values of y are established by the
up-and-down portion of the test program, and (3a) allocate the
test specimens to sI and a2 as the test progresses using
Equation (14) to decide between testing at al or .., or (3b)
proceed as in (3a) except test at the tgo stimulus levels
corresponding to the optimum values of p in Table 1. (These
two levels may be updated as the test progresses. The iterative
procedure may be quite worthwhile when s and a2 are closely
spaced(a).)

The up-and-down portion of the two-point test program
should generally be undertaken with the uniform spacing
between successive stimulus levels chosen to be approximately
equal to the standard deviation of the underlying response
distribution. If the spacing is too narrow, the resulting
values of ', and 82 in the two-point testing portion of the
program will generally be too close together to permit precise
estimation of y0. On the other hand, if the spacing is too
wide, the up-and-down portion of the test program tends to
be quite long, with the successive test outcomes alternating
back and forth between response and nonresponse. Thus, a
reasonably accurate estimate of the standard deviation of
the assumed underlying distribution is mandatory, viz., there

(a) Ideally the investigator has a computer program which
records the given test outcome and provides the stimulus
level for the next test. Otherwise, the computations may
take place at convenient intervals as the test program
progresses.
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* Code: X denotes Response, 0 denotes Nonrespons.

Stimulus Test Number
Level 1 2 3 4 5 6 7 8 9 10

2.0 X
1.7 X X X
1.4 0 X 0 X XXXX0
1.1 0 X 000000000000000OX0
0.8

Up-and-down Testing Two-point Testing
(a) (b)

Data Sumuary:
2s ni ri Pi
5 *

2.0 1 1 1.000
1.7 3 3 1.000
1.4 9 6 0.667
1.1 20 2 0.100

Figure 3. The two-point test program consists of: (a) a
beginning up-and-down series of tests to establish
two finite y values (p values not equal to zero or
one), followed by (b) tests conducted at two
stimulus levels, sa and s21 which specimens allocated
to *l or a as the overall test progresses such
that text Equation (14) is satisfied.

NOTE: The up-and-down test strategy is as follows:
The outcome of any given test determines the
stimulus level used in the next test. For example,
the second specimen responded (denoted X), thus
the third specimen was tested at a lower stimulus
level. On the other hand, the third specimen did
not respond (denoted 0) and therefore the fourth
specimen was tested at the next higher stimulus
level. Uniform spacing between adjacent stimulus
levels is used for convenience, but is not mandatory.
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must be some preliminary testing or some prior experience to
form a basis for selecting the spacing of the stimulus levels
used in testing. Generally an estimate of the standard
deviation a that is accurate within plus or minus fifty
percent is adequate, but it is preferable that the spacing
d fall in the range a < d < (3M/2). The advantage of the
iterative procedure (3b) increases as d is decreased below a.

Many readers will probably opt for the simplified test
method and analysis. In this case we merely ignore the
tests conducted at stimulus levels other than s and a2

(refer to Figure 3) and estimate the fitted distr4bution by
drawing a straight line through the two points [(yl, el),

A A

(y 2 ' 2)]" The variance of y0 is then estimated using
Equation (12) and reading w from Figure 2.

t If it does not seem advisable to ignore ýests at stimulus

levels other than a, and *2' the variance of yo may be

estimated using the general expression
-22 s0 - w

2a = 1 + - ] Y 3 (16) 1
) niwisi Sw2

The wi values in (16) may be approximated either by empirical

weights (i.e., based on the observed Yi values), or fitted

weights (e.g., based on maximum likelihood analyses [2]).

3.1.1. Numerical Example (Simplified Analysis). Given
the quantal response data in Figure 3 (ignoring the tests
at stimulus levels other than 1.4 and 1.1), viz.,

A

si ni ri Pi

1.4 9 6 0.667
1.1 20 2 0.100

estimate 0 corresponding to p - 0.001 and sketch the lower
95% (asymptotic) confidence band. Assume gn underlying
normal distribution.
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Solution. First, we shall check the allocation of n1
A A

and n2, relative to the final values of p. For p1 - 0.100,

YI from normal tables equals - 1.281 and for P2 - 0.667,

Y2 equals + 0.43. Moreover, ^for p0 - 0.001, y0 - - 3.09.
The corresponding values of w are 0.34 and 0.60 respectively.
Thus, using (14)

I
nl 1260 )2 + 0.43 - ( - 3.09 - 2.6

whereas the actual value is 20/9 - 2.2. This discrepancy
means that if further tests were conducted, the first few
additional tests should be conducted at - 1.1 -- unless
of course the p values change markedly as the data accumulate.

The fitted response distribution passes through the
points [(1.1, - 1.28), (1.4, + 0.43)], giving the response
expression

A

y - - 7.55 + 5.079

Hence, y0 - - 3.09 (p0 w 0.001) corresponds to so equal

0.78. In turn, using (12)

2^ 1 (1.4 - 0.78)32 0.fto I. _ + [11-0782)

(yo) (1.4 ( 1.1)2 20 x 0.34 9 x0.760

Thus

aOh) m 0.84

The corresponding lower 95% asymptotic confidence band
appears in Figure 4. Note that we can be approximately
95% confident that 99.9% of all specimens will survive a
stimulus level of 0.22.

3.2. Large Sample Procedure. The large sample proce-
dure is based on information obtained by response tests
conducted using the previous small sample procedure. Namely,
approximately fifty specimens are tested using the small
sample procedure to estimate s* and sa corresponding to the
optimum p values in Table 1. Then, given this information,
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the remaining specimens are tests at at or at a*2 using (14) 4 -

for appropriate allocation; or else each successive specimen 1

may be tested at that stimulus level which minimizes (16)as the data accumulate. The latter iterative procedure is
enhanced by a digital computer program compiled and placed
in a file ready for execution by remote terminal.

4. SUMMARY. The procedure is straightforward: (a)
select the appropriate values of the stimulus level, and
(b) allocate the tests at these stimulus levels such that
the variance of the desired point estimate is minimized.Usually the variance of the desired point estimate may be 9
reduced markedly merely by considering a few alternative
stimulus levels before testing (using Figure 2 and Equation
16). But the variance of the point estimate may be reduced
even further by adopting certain minimum variance strategies.
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TECHNIQUES FOR STATISTICALLY DETERMINING FLIGHT
SUITABILITY OF AN ARTILLERY PROJECTILE

Ronald Corn
Gertrude Weintraub

A&imunition Development and
Engineering Directorate

Picatinny Arsenal
Dover, New Jersey j

ABSTRACT. The M483 155mm Projectile being tested at
Nicolet, Canada, to evaluate aeroballistic performance at
high air density exhibited flight instability. The authors
were responsible for determining cause of problem, correcting
the problem and developing the statistical technique necessary
for predicting success. The projectile design modifications
evolved successfully passed retesting at Nicolet and the pro-
jectile has been released for production. The induced yaw ¶

_ * technique for disturbing projectiles as they exit the gun tube, 4
developed during this program, is currently being used on other
developmental projectiles and will be used to evaluate aero-

* • dynamic stability of all future Howitzer type projectiles.

The statistical techniques used to predict success which
- also permitted a minimal expenditure of projectiles were:

a. A Weibull mathematical model was selected and imple-
mented to predict point estimates and confidence level estimates
of reliability and percentage points based upon the maximum
likelihood estimates of the p2rameters of a Weibull population.

* This model afforded excellent theoretical descriptive character-
istics of the density and probability distributions of the
empirical test daLa which were symmetrical and asymmetrical
in form.

b. Automated computer programs especially adapted to
the Weibull model were employed to derive density and proba-
bility distribut.on curves.

c. Probabiiity plotting methods were implemented to
describe the adequacy of the theoretical distributions to the
empirical test data.

1. INTPODUCTION. The M483 projectile development which
was conpl-eed in 197Y provided an important new 155mm cipa-
bility to the US Army. Figure 1 depicts an M483 projectile
alor.gside of the standard 155mm M107 projectile. Because of
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the obvious increase in size and cargo volume, over 50% of
the standard, the M483 configuratiorn is being utilized for a
variety of projectiles whose mission is to deliver cargo on
to a target area (e.g. chemical, smoke, illuminating and sub-
munition).

To accommodate the increased cargo, the M483 projectile is
over 6 calibers in length and utilizes an aluminum ogive and
base and fiberglass wrapped body to minimize weight and distri-
buts it properly for aerodynamic considerations. Because of
its unique shape, comparatively little knowledge of its aero- 4-
dynamic characteristics was available prior to 1974 when sur-
prisingly poor performance was exhibited in cold weather tests.

In 1974 a cold weather test program was conducted at
Nicolet, Canada, located between Montreal and Quebec along
the Saint Lawrence River (Figure 2). Nicolet provides an
existing Canadian test facility which permits projectile
firings at near Arctic conditions to evaluate aeroballistic
performance at high air dencity (in excess of 110% of standard),
which tends to amplify aerodynamic instabilities.

On 14 Feb 74, 20 each M483 projectiles were fired with
a standard US Propellant charge whose weight was adjusted to
obtain a velocity of Mach 0.93. At these Arctic conditions
this Mach number was predicted to be the most severe aero-
dynamically. The impact point of 13 of those projectiles
which exhibited normal flight performance is shown in Figure
3. These projectiles impacted on expected ranges of approx-
imately 6300 meters. Seven of the twenty projectiles impacted
between 2000 and 3300 meters short of the impact area as shown
in Figure 4.

Production of the M483 was suspended as a result of the
incident at Nicolet and an intensive program initiated to
determine the cause of the erratic performance at Nicolet.
Initially a fault tree was configured (Figure 5) and an in-
vestigative program was developed based upon fault tree
elements.

To determine whether the cause of the problem was routed
in interior or exterior ballistics, it was necessary to con-
duct a highly instrumented series of firings which for the
first time, would obtain initial yaw characteristics of a
statistical sample of in-flight projectiles, as well as pro-
jectile range information for those same projectiles. Figure
6 shows the test site at Yuma Proving Ground. Cameras and
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yaw cards were used to independentlv m-a: re launch angles
of the projectile while radar and wtir.ard triangulation
techniques were used to determine flight characteristics and
dowm range impact points. Launch velocities were adjusted
from standard US velocities to duplicate the critical mach
number of the Nicolet tests by modification of propelling
charges.

The results of the initial tests showed that the M483
problem was primarily an exterior ballistic problem and that'
in fact, the aeroballistic characteristics of the projectile
were unsatisfactory. Ms. Weintraub's application of statis-
tical techniques proved invaluable for predicting performance
and follows in detail.

2. STATISTICAL TECHNIQUES USED IN A FLIGHT SUITABILITY
INVESTIGATION7. At the outset, I want to take this opportunity
to express my gratitude to Mr. Corn and his associates in this
stability investigation. They were open-minded and willing to
draw upon statistical disciplines to assist them in resolving
an engineering problem. The result of the cohesive union of
engineering and statistics proved successful,

A complex problem was solved when a probabilistic ap-
proach was applied to analyze real world test data. Professor
John Tukey of Princeton would probably refer to the statistician's
efforts in our data analysis as exploratory and probabilistic
and the end result as confirmatory. Our greatest gains in
analyzing empirical data came from surprises, which I will ex-
plain a little later.

In this case, the engineering community succeeded in
ferreting out the causes for short rounds (defined as those
which fail to fly to full range) and redesi-ned the projectile
to eliminate the occurance of short rounds.

As statistician, I entered the picture after the following
events had occurred:

1. On 10 Feb 74, seven out of twenty standard M483 pro-
jectiles fired at critical Mach number (0.93) from the 109A1
Howitzer flew approximately half range.

2. The engineering community undertook an .nvestigation
by designing a test program to determine the cause of these
short rounds. The program wasacomplex and ambitious one and
sought to determine whether the problem was either interior or
exterior ballistic related.
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3. Aerodynamic knowledge at the start of the investigationsupported the belief that the M483 was stable up to a first

maximum y~w angle of 80.

The first test conducted at Yuma Proving Grounds was with
the standard M483 fired at critical mach number in order to ¶

correlate first maximum yaw angle with range. The yaw angles
were obtained with yaw cards and cameras as back up, the test --*
set up is shown in Figure 6. The yaw cards were set approxim-
ately 100 feet forward of the gun.

Figure 7 is a plot of the first maximum yaw angle vs.
range and the first surprise of this test program was that the
critical yaw angle was 5-60 and not 80 as previously predicted. r

Critical yaw angle is defined as the angle above which the
projectile becomes aerodynamically unstable and does not fly
full range.

The yaw angles generated from 20 tests conducted with the
standard M483 projectile (varying its internal cargo, tubes and

muzzle brakes) were presented for analysis. As had been done
on other problems, a probabilistic design approach was used.
Yaw angle was considered the continuous random variable and the
problem was to examine the distribution of yaw angle. I chose
to fit a Weibull distribution model since it afforded me a use-
ful mathematical tool for describing the probability distribution
function and the density function of symmetrical and asymetrical
forms. Figure 8 shows a spectrum of distributional forms which
can be described by a Weibull model (see Figure 9 for the pdf
and density mathematical forms of the Weibull distribution).

In terms of a statistical probability distribution, the
distribution of yaw angles for the standard M483 Projectile
fired from a 50% worn tube at Yuma is seen on Figure 10. It
was determined that this condition tube produced the highest
first maximum yaw distribution and this tube was used for most
of the testing.

Maximum likelihood estimates of the parameters of a
Weibull population were determined based upon the iteration
procedures for joint maximum likelihood estimation of the 3
parameters of the Weibull population described by Harter and
Moore in their notes contained in Technometrics, Volume 7,
No. 4, November 1965. The asymptotic variances and covariances
of maximum-likelihoou estimators were then employed in deriving
confidence interval estimates for probabilities based upon the
MLE estimates. The latter confidence interval estimates were
derived with the assistance of Dr. Einbinder and members of the
Computer Programming Facility at Picatinny Arsenal.

* 1 70
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Based upon the maximum likelihood estimates of the 3
Weibull parameters, one could expect 33% of the standard M483
Projectiles fired from the 50% worn tube to exceed 50. And, in
fact, at Nicolet, Canada, 7 out of 20 (35%) fell short. This
gave further credence to the low critical maximum yaw angle
premise.

The fitted yaw distribution function also indicated that
for the standard 1483 to fly full range, its critical first
maximum yaw angle must be greater than 130. At this critical
yaw angle one can expect no more than one short range projectile I
in a million rounds.

Thereafter, the investigative test program was directed
to assessing the effects of system parameter changes on the
yaw angle distribution and the design of modifications that
would have high critical yaw angles. The system parameters
investigated Included: new tubes and worn tubes, with and
without muzzle brakes, and cargo variation. It appeared that
the greatest effect on yaw angle level was the presence or
absmnse of a muzzle brake on the end of the gun tube.

Figure 11 shows how absence of a muzzle brake improves
the yaw angle probability distribution of the standard M483.
Now only y in 09000 rounds are expected to exceed the 50
critical yaw angle in lieu of 33% with a muzzle brake. This
frequency was also too high to be acceptable.

The real problem facing the engineering task team was to
design a projectile modification whose critical angle exceeded
130, since as previously shown no more than one short range
round in a million would be expected at this critical yaw angle.

After many design modifications, and statistical analyses
of these changes, two modifications of the standard M483 were
built and tested: Figure 12 describes the modifications made
to the standard M483; Figure 13 compares the yaw angle probabil-
ity distribution functions obtained for Mods 1 and 2 when tested
with the 50% worn tube with muzzle brake. For each Mod, it was
found that one in a million rounds would exceed 80 first mau-imum
yaw angle.

Since the modifications were designed to be more stable
than the standard M483, a teclnique had to be devised for deter-
mining how much more stable they were and also their critical
yaw angle.

Since it had been determined that muzzle brakes signifi-
cantly affected yaw angles, modified muzzle brakes, Figure 13A,
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were designed and tested as a means of inducing even greater
yaw angles to evaluate design modifications. First maximum
yaw angles of as high as 200 were obtained.

Figure 14 illustrates, visually, by means of a yaw card
comparison, the large angle from which the modified rounds
will still damp and fly normal ranges as compared to the
original M483 projectile$ Figure 15.

An interim Picatinny Report dated March 1975 has been
published covering this work. Figures lB and 17 show the
adequ~acy of the Weibull model in describin h miia
distribution characteristics of test daafrte standard
M483 round and for design modification 2.

This probability plotting method was used to assessth
goodness of fit of the theoretical Weibull model to the em-
pirical test data.

Figures 18 and 19 show the density function for the
standard M483 and design modification 2. Each of the distri-
bution. is right-skewed, but we can see that mnodification 2
shows a significantly smaller dispersion around the mean.

Summing up, therefore% what modification 2 accomplished
is two-fold.,4

1. It yielded a significantly smaller dispersion of
first maximum yaw angle around the mean, one in a million
exceeds 80 vs. 33% exceeding 50 for the standard M'483.

2. It produced a more stable projectile, critical angle
greater than 180 vs. 5-B0 for the standard M483.

3. CONCLUSION. A real world enginee-ring problem was
resolved wT~ithteasistance of probability methods. Statis-
tical analyses were helped immeasurably by computer software
programs which were available. These programs afforded rapid
assessment of design modifications and comparisons. The
efforts could not possibly have been accomplished in as short
a time without the computer. The computer program of Drs..
Harter and Moore of Wright-Patterson Air Force Base was used
extensively to deriye the maximum likelihood estimates of the
Weibull parameters . Software programs available at Picatinny

1As an saside gratitude is extended to Dr. Badrig
Kurkjian for introducing Picatinny Arsenal to the
Harter Moore program which has proved to be invaluable
in helping to solve many engineering problems.
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Arsenal, specifically in the Concepts and Effectiveness
Division, contributed greatly toward the successful evaluation
of test data.

4. STATISTICAL CONTRIBUTION.

1. Statistical probability techniques fixed the
critical yaw angle for the standard M483 Projectile.

2. Statistical analysis predicted the yaw angle
probability distribution for many modifications and for dif-
ofernt tubes. These distributions provided the engineering

task team with essential information for directing their
efforts toward projectile modification.

3. a. For the first time, probability design was
used to predict projectile performance using a minimal number
of rounds. Cost reduction and risk associated with future
artillery development programs should follow.

tol b. The application of probability design served-•' a twofold purpose:

gvnyw ra(1) It predicted the probability of exceeding

Sa given yaw for aspecific design M483 Projectile.

oa (2) It afforded the engineering task team
faoalg in this case, a 130 critical yaw angle; so that their

eaforts were directed toward achieving this goal in order to
eliminate short rounds.

4. A Blue Ribbon Panel especially assigned to over-
view the stability investigation approved the efforts and
findings of the investigative team and commended all members
of the team for their analysis of and correction to the pro-
jectile flight problem. The panel further stated that "in
the course of this program much has been learned that is of
basic value in the ballistic design and development of project-
iles." Further, the panel recommended that the "team can well
undertake future new and interesting designs of special shells"
and recommended that this project be well documented for future
guidance.

CONCLUDING REMARKS:

As a result of the program and techniques just described, modifications
1 and 2 were extensively tested at Nicolet during the winter of 1975. Both
modifications performed satisfactorily as predicted. Modification 2 was
selected since it did not result in internal cargo volume loss and it was
recently released for production as the M483A1.
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APPLICATION OF LIFE TESTING TECHNIQUES TO DETECTION DATA

Carl B. Bates and Jerry Thomas
Applications Group

Methodology and Resources Directorate
US Army Concepts Analysis Agency

Bethesda, Maryland

ABSTRACT. Life testing techniques for censored sample data are

discussed. Singly and progressive censoring of type I and type II are

defined. The detection phenomenon involving observers not always detecting

targets is placed in the framework of progressively censored sampling.

Maximum likelihood estimates for the parameters of the two-parameter

Weibull distribution are given, and a test statistic is presented for

comparing two Weibull distributions fitted to censored sample data.

Weibull distributions of sample sizes 500, 250, and 100 having 0, 10, and

20 percent censored are simulated. The shape parameter is varied over the

range 1.0 to 3.5 and equality of pairs of the distributions is tested.

The relationships between Beta and the Beta difference that is distinguishable

are given for each of the three sample sizes. For the largest sample

size, at the 0.5-level of significance, the Beta difference that is

distinguishable varied from 0.15 for small shape parameter values to

0.38 for large shape parameter values. For the 100 sample size distribu-.

tions, the Beta difference distinguishable varied from 0.30 to 0.73.
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1. INTRODUCTION

The detection, identification, and localization of enemy targets

is an integral part of many US Army studies. These studies may be

classified into either computer simulated experimentation or field ~

conducted experimentation. Field experimentation involving the detec-

tion process is usually performed to estimate or compare the effective-

ness of materiel or methods of employment. Often empirical data fromA

the field experimentation is then used as input to computer simulation
models, or the analysis results of the empirical data are used to

provide the basis of simulating detection in computer simulation models.

Because of the "no detections" (observers not detecting exposed

targets) which occur in field experimentation involving detection

processes, the analysis of empirical detection data presents unique1

problems. In the sections which follow. the analysis problems are

discussed and a proposed analysis methodology is presented and illustrated.

11. PROBLEM DESCRIPTION AND BACKGROUND

A. Problem Description

A field experiment involving candidate land combat systems is

designed and conducted. One of the many measures of effectiveness of

the systems is detection time. During the conduct of the experiment,

however, the systems do not always detect exposed enemy targets. There-

fore, detection time data is not collected for all of the planned trials

of the field experiment. Consequently, the original orthogonal design

for the experiment is nonorthiagonal with respect to the response variable,

J
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detection time. The objective of this report is to present a method of

analysis which uses both the detection times of detected targets and the

exposure times of undetected targets.

B. Background

Land combat experimentation involving the detection of targets

invariably results in targets not being detected for some of the experi-

mental trials, e.g., Caviness et al. (1972) and McKinney et al. (1971)

and (1972). Treating the "no detect" trials as missing values and apply-

Ing one of the statistical techniques for estimating missing values does

not have appeal because it does not utilize all the available information

from the experimental data, namely, the duration of the time that line-of-

sight existed between the observer and the target. Ignoring the no detect

trials and analyzing only the data from trials for which a detection did

occur does not have appeal for the same reason. Moreover, analyses based

on all available experimental data addresses the unconditional detection

probability of Interest, whereas analyses based on only trials for which

a detection did occur addresses the conditional probability of detection,

given a detection has occurred.

A search for a proper method of analysis of the detection times

which would utilize the target exposure times of the no detect trials led

to the area of life testing. It was concluded that the detection

phenomenon when all targets are not detected Is similar to the censored

sample situation in life testing.
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111. LIFE TESTING

In life testing a number (N) of components are tested and the time

to a component's failure is recorded. If components are withdrawn from

the test before failure (in our case a target passes from an exposed

state to a concealed state without being detected) the sample is termed

censored. Censoring may be of two types:

1. Type I - in which at some predetermined fixed time, say to,
testing is terminated, or

2. Type 1I - in which after some predetermined fixed number,
say n, of sample items fail, testing is terminated.

With each type of censoring, the collected data consists of the n failure

times tj, t2 ., tn, plus the information that the remaining (N-n) items

survived beyond the time of termination, to for Type I and t n for Type 11.

The above described censoring is termed singly censored samples. If,

however, the initial censoring results in withdrawal of only a portion

of the surviving items, with some remaininq under test until ultimate

failure or until a subsequent stage of censoring is performed, we have

*/ progressively (multiple) censored samples. In general then censoring

occurring progressively in k stages at times T1; i-l,2,...,k, and at

each ith stage of censoring ri sample items are selected randomly from

the survivals at time T1 and removed (that is, censored) from further

observation. This is analogous to our detection phenomenon. We have a

target coming from a concealed state to an exposed state just as a test

item starting under observation during test. If, however, a target

passes from an exposed state back to a concealed state without being
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detected, it is removed from further observation at a time T, (equal to

the target's total exposure time). Further, in our case each of the k ri

equal one because in general the exposure times of any two or more unde-

tected targets are not identical.

Past experience has shown a positive skewness in the empirical data

distributions of time variables associated with the target detection

process, Bates (1971) and McKinney et al. (1971) and (1972). Moreover,

in McKinney et al. (1972) it was shown that the two-parameter Weibull

distribution gave adequate approximations to detection time sample dis-

tributions. In the probability density function (pdf) of the two-param-

eter Weibull distribution,

f(x) - (o/* )x 8' exp[-(x/W ) ]; x > 0 O, B 0 , (1) >

a is the scale parameter and B is the shape parameter.

The Weibull distribution provides considerable flexibility for

approximating a variety of distributions. When B - 1 we have the exponen-

tial distribution and when a a 3.5 we have a distribution very close to

the normal distribution. In FIGURE 1 on the next page, the Weibull pdf

is shown for three different shape parameters. The middle curve is a

positively skewed distribution similar to that of our target detection

times.

r
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f(x)

* ,

* FIGURE 1, Weibull Probability Venslty Function

The flexibility of the Weibull distribution can be further

illustrated in terms of the cumulative distribution function (cdf).

In the context of our detection problem, the cdf F(x1) is the probability

of detection by time xt. FIGURE 2a is an S shaped cdf similar to that of

a normal distribution. FIGURE 2b illustrates the cdf of a Weibull

distribution having the same shape parameter as the distribution in

FIGURE 2a, but a larger scale parameter. FIGURE 2c has the same scale

parameter as FIGURE 2a, but a smaller shape parameter.
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IV. ESTIMATION

The first step in the analysis process is the approximation of the

distribution of target detection times. This involves estimating the

two parameters, a and s, of equation (1). Substituting Q and B for
A

a and B in f(x) gives the approximation distribution, f(x), of target

detection times. The estimation technique which is employed evolved

from life testing.

Cohen (1963) shows that although intermediate steps in the deriva-

tions differ, the maximum likelihood estimation equations for Type I

and Type II progressively censored samples yield the same end result.

The maximum likelihood estimation equations for the two-parameter Weibull

distribution are given in Cohen (1965). The equations are nonlinear In

the parameters and must, therefore, be solved by iterative procedures.

He solves the expression,

A A

[(E xiln xi/E x-)_(l/A), (l/n)E in x1  (2)^i

A
for B. The asterisk denotes that the summation is over the entire sample

with the ri observations censored at time Ti assigned the value xi - Ti.

Then, substituting 8 obtained from equation (2) into the other maximum

likelihood estimation equation, aln L/DcA, and solving for C he gets

A A
A =(E*r /)(l/B) (3)

where In L is the logarithm bf the likelihood function. Substitution

of the two obtained parameter estimates, 8 and 4, into equation (1)
A

yields the desired approximation distribution f(x).
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The mean of f(x) is

� E(x) • • r(l + l/J). (4)

And the approximate variance is

V(x) W (if/as) V(0) + (0f/a3)V(") + 2(af/alJ(af!as)Covl,(d). MS)

V. HYPOTHESIS TESTING

Suppose that in a field experiment two candidate detection devices are

under study. One of the primary objectives of the experiment is to corn-

pare the detection distributions of the two devices and make inferences 7

concerning the equality of the two populations. After applying the

estimation techniques in the previous section to the empirical detection

data collected on the performance of the two devices to approximate the

distribution for each device, we are now interested in comparing these two

distributions. Specifically the null hypothesis.

H:[1

is tested against the two sided alternative hypothesis,

• ~Ha: (• • 7)

i T
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The test statistic for testing the null hypothesis against the

alternative hypothesis is Q, where

A A A [ 0(G)2 1(a)
Q 11 * J 2A A *A A (8)

and where the variance-covariance matrix is

[ 2(A G( ' A ) + )( A( (12.() coV(& .I v( , )+ v(a15J) . v() 9)
0 ~ (a) 1 91 ~ 2 2 1 2

Equation (8) is a quadratic form and is approximately distributed

as a Chi-square variate with two degrees of freedom, see for example,

Mood (1950). Rao (1952), or Wilks (1962). That is,

Q -x2(2). (10)

An inspection of equation (8) shows that close agreement between the

two distributions yields a small statistic, while a large difference

between the two yields a large statist-ic. Therefore, the critical region

of the test is the upper tail of the x2 -distribution. Consequently, to

test the null hypothesis of equation (6), compare Q with x2 (l-a,2), If

Q _. x2(1-a,2), reject the null hypothesis at the a-level of significance;

otherwise do not reject the null hypothesis. By rejecting the null

hypothesis, we are saying that the two detection distributions are not

equal.
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I VI. TEST DISCRIMINATION

A. General

In the previous section it was seen that the determination of a

difference between distributions is dependent upon the scale parameter,

"", and the shape parameter, o. For this study it was decided to set a

I equal to 25 and concentrate our efforts on the shape parameter, B. When

I B * 1, tho Weibull distribution is equivalent to the exponential distri-

* bution and when o a 3.5, the distribution is approximately normal. Since

the shape of the detection distribution is expected to be within this

* i range, shape parameter values between 1.0 and 3.5 are studied.

B. Sample size of 500

Test performance in application can be no better than the

asymptotic power of the test. Because no information is available on the

7 power of the test, an initial sensitivity analysis is performed. Conse-

quently, large samples having a moderate amount of censoring are first

studied.

* Weibull distributions of sample size 500 having three different

percentages of censoring (0, 10, and 20) were generated by Monte Carlo

simulation. The scale parameter was arbitrarily fixed at a a 25. The

Srange of the shape parameter values (1.0 to 3.5) was divided into five

sub-ranges of length 0.5 each. Within each suc range B was incremented

in steps of 0.1 to give six B-values, e.o., (1.0. 1.1, 1.2, 1.3, 1.4, 1.5),

(1.5, 1.6, 1.7, 1.8, 1.9, 2.0), ... , (3.0, 3.1, 3.2, 3.3, 3.4, 3.5). For

each of the six B-values, a Weibull distribution was generated for each

of the three percentages censored. This gave eighteen distributions
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II
for each of the.five $-value sub-ranyes or a total of 153 pair-wise

comparisons. For completeness and anticipated follow-on analyses,

summary statistics are tabulated in APPENDIX A. TABLES A-i through A-5

contain the five sets of summary statistics of the eighteen distributions.

Within each set of eighteen distributions, all possible (153) compari-

sons were made between pairs of distributions. That is, the null

hypothesis of equality of the two distributions, equation (6), was tested.

This gave 153 Q-statistics. The corresponding O differences (rg-•t;

ial,2,...,17;j=2,3,...,18) were calculated and paired with the 0-statistics.
Within each set of differences and Q-statistics, six different combina-

tions existed between the percentages- censored in the two distributions

being compared-(O,O), (0,10), (0,20), (10,10), (10,20), and (20,20). The

distribution of the 153 cases over the six combinations is shown in

TABLE 1 below. j
TABLE 1

CENSORING DISTRIBUTION

Combination Percentage Censored Number of
Number (Sample J, Sample i) Samples

1 (0,0) 15

2 (0,10) or (10,0) 36

3 (0,20) or (20,0) 36

4 (10,10) 15

5 (10,20) or (20,10) 36

6 (20,20) 15
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The theoretical relationship between the 0 differences and Q is

parabolic. Therefore, a quadratic in • differences was fitted for each

of the six combinations in TABLE 1, using I differences as the independent

variable and the Q-statistic as the dependent variabl*. Within each of

the five O-value sub-ranges, the quadratic fit for each of the six censor-

ing combinations was evaluated for Q - 5.991, the x2(?) critical value for

the 0.05-level of significance. This gives the difference between the

shape parameters of two distributions which would be declared significant

at the 0.05-level of significance. The largest variation among each set

of the six A differences was 0.04. This Is well within the variability

of the generated data. The six combinations of each $-value sub-range

were then "pooled" aiJ a quadratic fit was made to each of the five sub-

ranges of the 153 8 differences. All fits were "good"; the coefficients

of determination ranged from 0.90 to 0.97. Each of the five sub-range

quadratic regression equations was then evaluated for two levels of signi-

ficance (0.05 and 0.01) or Q - 5.991 and Q - 9.210. The resulting relation-

ship between o and the o differences detectable for the two significance

levels is graphically illustrated in FIOURE 3 on the following page.

FIGURE 3 suggests a strong linear relationship between 0 and the 6

difference that Is detectable. In fact, the ratio of the plotted 0

differences over their respective sub-range mid-points is nearly constant

for each level of significance. At the 0.05-level of significance, the

ratio is approximately 0.12: at the 0.01-level of sigilficance, it is

approximately 0.15.
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FIGURE 3. TEST DISCRIMIATION FOR NWOO

FIGURES A-1 through A-5 of APPENDIX A pictorially Illustrate typical

distributions, within each of the five sub-ranges, which are statistic-

ally different when equality is tested at the 0.05-level of significance.

Each of the five figures contains a plot of two distributions, taken

from the samples shown in TABLES A-1 through A-5, respectively. The

distribution having the smaller shape parameter is drawn with a solid

line and its shape parameter estimate is denoted by A,; the distribu-

tion having the larger shape parameter is shown with a dashed line and
A

its shape parameter is denoted by 6a. For example in FIGURE A-l,

2.
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samples were selected from a distribution with 0 1.1 (with no censoring)

and with B - 1.2 (with 10% censoring); and the two sample estimates of

the shape parameter are 01 1.062 and a1.227. The Q-statistlc for

testing the null hypothesis of equation (6) is also given on each figure.
2

In each case, the Q-statistic is between X (0.95,2) - 5.991 and
2
x (0.99,2) - 9.210. Thatc is, the level of significance at which the null I

hypothesis would be rejected is between 0.05 and 0.01. The five figures

illustrate the test discrimination between distributions of different

shapes over a range of shape parameter values from 1.0 to 3.5. -

C. Sample Size of 250

In practice large samples are often not available. Therefore,

*test performance for two smaller samples (N *250 and N *100) are studied.

The results for N - 250 are presented first.

Weibull distributions of sample size 250 were generated. The

same scale and shape parameters and the same percentages of censoring

were used as for N - 500. The procedure described in Section A above was

repeated using N -250. The summary statistics are given in TABLES B-i

through H-5 of APPENDIX B. This time the largest variation among each

* set of the si0 differences was 0.07. Again, this variation is within

the variability of the generated data. The Beta differences obtained

from the evaluations of the five quadratic regression equations are

given In TABLE 2 below. As before, there appears to be a linear relation-

ship between 0 and the 0 difference that is detectable.
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TABLE 2

BETA DIFFERENCES FOR N a250

Significance Beta
Level 1.0-1.5 1.5-2.0 2.-2-.5 2.5-3.0 .35

0.05 0.20 0.29 0.37 0.45 0.54

0.01 0.24 0.36 0.47 0.55 0.67 i
The test discrimination for each of the five sub-ranges is illustrated

in FIGURES B-i through B-5 in APPENDIX B. The notation in the figures

Is the same as that described in the previous section. The distribution

having the smaller shape parameter estimate is denoted by 40 and the larger

is denoted by 12# The significance level of each pair of illustrated

distributions is between 0.05 and 0.01. The Q-statistic is again given

on each of the five figures.

D. Sample Size of '00

In the examination of the test performance for N *100, th. sub-

ranges of the shape parameter values had to be reconstructed. This was

because the Beta difference which is distinguishable Is larger than 0.5

for, shape parameters greater than 1.5. Therefore, the shape parameter

* range was divided into three sub-ranges rather than the five previously

used. The three sub-ranges were 1.0-1.5, 1.5-2.5, and 2.5-3.5. Within

the first sub-range, a was incremented in steps of 0.1 as before. But

wi'thin the two larger sub-ranges, a was incremented in steps of 0.2.

F ~This gave six B-values for each of the three sub-ranges. The summnary

I statistics of the three sets of eighteen distributions are given In

TABLES C-1, C-2, and C-3.
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The largest variation among each'set of the six 0 differences was 0.08,

again within the variability of the date. The Beta differences from the

three quadratic regressions are given in TABLE 3. Test discrimination is

pictorially illustrated in the three figures of Appendix C.

TABLE 3

BETA DIFFERENCES FOR N = 100

Significance Beta

Level 1.0-1.5 1.5-2.5 2.5-3.5

0.05 0.30 0.48 0.73

0.01 0.37 0.57 0.89

and The test discrimination for all three sample sizes is shown in

FIGURE 4. All three sample sizes exhibit a linear relationship between B

and the 0 difference that is detectable. As expected, the 0 difference

that is detectable is smaller for large sample sizes than the 0 difference

that is detectable for small sample sizes. The dependence of the 0

difference that is detectable upon B is greater for small sample sizes

than it is for large sample sizes. The trend of the lines for N - 100

has the steepest slope.

VII. CONCLUSIONS

The test statistic performed satisfactorily over the range of shape

parameters and the percentages of censoring investigated. For the three

sample sizes and the parameter values studied, test discrimination is not

degraded when censoring does not exceed twenty percent of the sample size.
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Therefore, under moderate degrees of censoring, the Q-statistic

provides a useful test statistic for testing the equality of two fitted

Welbull distributions. The relationships shown in FIGURE 4 between -

and the 0 differences that are distinguishable can serve as indicators

of test discrimination. These indicators should be of value when design-

ing target detection experimentation and when analyzing target detection j
data in which all exposed targets are not detected. j
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TABLE A-], N * 500 and Shape Paranmter Equal 1.0 - 1.5

Sample Percent A
Number Censored _E(x) V(x)

1 0 25 24.750 1.0 1.053 24.251 530.9682 10 25 27.050 1.0 1.028 26.747 677.0183 20 25 30.912 1.0 1.023 30.625 896.403

4 0 25 25.219 1.1 1.062 24.629 538.1615 10 25 26.285 1.1 1.098 25.379 535.6696 20 25 27.943 1.1 1.219 26.181 465.978
7 0 25 25.637 1.2 1.188 24.179 417.4138 10 25 26.702 1.2 1.227 24.979 418.800920 25 27. 661 1. 2 1. 123 26.515 559. 533

10 0 25 25.975 1.3 1.279 24.071 359.64411 10 25 25.717 1.3 1.312 23.708 332.41312 20 25 27.895 1.3 1.346 25.592 369.171

13 0 25 24.131 1.4 1.461 21.857 231.18114 10 25 25.234 1.4 1.518 22.747 233.31715 20 25 25.710 1,4 1.388 23.466 293.222
16 0 25 25.669 1.5 1.502 23.169 246.87017 10 25 25.341 1.5 1.427 23.029 268.04718 20 25 28.123 1.5 1.473 25.445 308.610
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TABLE A-2, N 500 and ShaDe Parameter Equal 1.5 - 2.0

Sample Percent AA

Number Censored _ L _X_

1 0 25 24.023 1.5 1.699 21.540 190.289
2 10 25 26.163 1.5 1.546 23.637 241.584
3 20 25 27.159 1.5 1.560 24.410 265.493

4 0 25 25.947 1.6 1.585 23.284 225.728
5 10 25 26.201 1.6 1.763 23.326 186.667
6 20 25 24.382 1.6 1.590 21.874 198.292

7 0 25 24.338 1.7 1.700 21.716 172.883
8 10 25 24.927 1.7 1.775 22.183 166.842
9 20 25 25.551 1.7 1.836 22.701 164.275

10 0 25 24.856 1.8 1.839 22.083 154.996
11 10 25 26.119 1.8 1.796 23.231 179.268
12 20 25 28.095 1.8 1.934 24.917 180.238

13 0 25 24.585 1.9 1.899 21.816 142.759
14 10 25 25.649 1.9 1.769 22.830 177.822
15 20 25 26.921 1.9 1.842 23.916 181.228

16 0 25 24.507 2.0 1.945 21.732 135.675
17 10 25 25.258 2.0 1.954 22.396 142.935
18 20 25 26.617 2.0 2.019 23.585 149.435
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TABLE A-3, N • 500 and Shape Parameter Equal 2.0 - 2.5

Sample Percent A ANumber Censored _ . E(x) V(x)

1 0 25 25.833 2.0 2.050 22.885 136.899
2 10 25 25.150 2.0 2.039 22.282 131.058
3 20 25 25.268 2.0 1.995 23.280 148.812

4 0 25 25.608 2.1 2.069 22.683 132.273
5 10 25 25.918 2.1 2.003 22.968 143.820
6 20 25 25.970 2.1 2.096 23.002 132.933

7 0 25 25.965 2.2 2.372 23.012 106.574 •
8 10 25 25.956 2.2 2.253 22.990 116.586
9 20 25 25.952 2.2 2.317 22.993 110.950

10 0 25 25.530 2.3 2.281 22.615 110.349
11 10 25 25.119 2.3 2.270 22.251 107.766
12 20 25 26.443 2.3 2.387 23.439 109.267

13 0 25 24.427 2.4 2.329 21.643 97.346
14 10 25 25.088 2.4 2.399 22.240 97.532
15 20 25 26.236 2.4 2.577 23.298 94.108

16 0 25 24.550 2.5 2.614 21.809 80.384
17 10 25 24.814 2.5 2.478 22.012 90.150
18 20 25 26.159 2.5 2.585 23.231 93.100
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TAnLF A-4, N = 500 and Shape Parameter Equal 2.5 - 3.0

sdiampl e Percent
Number Censored _ E(x) V(x)

1 0 25 24.657 2.5 2.573 21.894 83.374
2 10 25 25.261 2.5 2.688 22.461 81.143
3 20 25 26.613 2.5 2.690 23.664 89.922

S 4 0 25 24.947 2.6 2.637 22.168 81.790
5 10 25 25.938 2.6 2.607 23.040 90.202
6 20 25 25.906 2.6 2.786 23.064 80.241

7 0 25 23.718 2.7 2.571 21.060 77.219
0 10 25 25.821 2.7 2.669 22.953 85.816

9 20 25 25.625 2.7 2.705 22.789 82.562

10 0 25 25.040 2.8 2.750 22.282 76.633
11 10 25 25.372 2.8 3.100 22.690 64.130
12 20 25 25.394 2.8 2.975 22.668 68.911

"13 0 25 25.166 2.9 2.856 22.426 72.552
14 10 25 26.543 2.9 2.988 23.698 74.736

* 15 20 25 25.832 2.9 3.054 23.085 68.194

S16 0 25 25.034 3.0 2.804 22.292 74.090
17 10 25 25.906 3.0 2.958 23.120 72.396
18 20 25 26.220 3.0 2.836 23.359 79.728
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TARLF A-S, N u 500 and Shape Parameter Equal 3.0 - 3.5

-samp Ipe Percent A A

Number Censored 0 Q 0 a LX yjX.

1 0 25 24.828 3.0 3,100 22,204 61.431
2 10 25 25.701 3.0 3.144 23.000 64.230
3 20 25 26.197 3.0 3.067 23.417 69.606

4 0 25 23.978 3.1 3.007 21.414 60.328
5 10 25 24.927 3.1 3.175 22.317 59.436
6 20 25 25.758 3.1 3.136 23.048 64.801

7 0 25 25.062 3.2 3.288 22.477 56.625
8 10 25 25.815 3.2 3.176 23.113 63.718
9 20 25 24.788 3.2 3.197 22.200 58.088

10 0 25 25.489 3.3 3.251 22.847 59.696
11 10 25 25.632 3.3 3.181 22.950 62.642
12 20 25 25.384 3.3 3.410 22.808 54.600

13 0 25 25.141 3.4 3.369 22.0t5 54.652
14 10 25 25,163 3.4 3.673 22.699 47.311
15 20 25 25.401 3.4 3.457 22.840 53.421

16 0 25 24.879 3.5 3.437 22.363 51.742
17 10 25 24.816 3.5 3.525 22.337 49.316
18 20 25 25.355 3.5 3.674 22.873 48.005
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TABLE B-1, N * 250 and Shape Parameter Equal 1.0 - 1.5

Saml e Percent .Censored Q ELx) V(x)
1 0 25 23.762 1.0 1.020 23.573 534.6322 10 25 26.378 1.0 1.127 25.258 504.3943 20 25 29.632 1.0 1.086 28.718 700.942

4 0 25 25.476 1.1 1.134 24.347 462.8785 10 25 29.179 1.1 1.170 27.631 560.9846 20 25 26.487 1.1 1.158 25.158 474.698

7 0 25 24.300 1.2 1.286 22.494 310.8858 10 25 27.358 1.2 1.339 25.124 359.4399 20 25 28.148 1.2 1.256 26.186 440.023

10 0 25 25.737 1.3 1.393 23.476 291.44511 10 25 26.655 1.3 1.390 24.322 314.01612 20 25 23.056 1.3 1.258 21.443 294.347
13 0 25 27.990 1.4 1.413 25.474 334.13614 10 25 24.890 1.4 1.392 22.706 272.95615 20 25 27.801 1.4 1.384 25.384 344.597

, 16 0 25 22.362 1.5 1.482 20.218 192.79417 10 25 26.176 1.5 1.490 23.651 261.168
18 20 25 25.832 1.5 1.522 23.279 243.071
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TABLE B-2, N - 250 and Shape Parameter Equal 1.5 - 2.0

Sample Percent
Number Censored .1 E(x) V(x)

1 0 25 24.720 1.5 1.693 22.0b2 179.775
2 10 25 26.497 1.5 1.527 23.870 264.103
3 20 25 26.613 1.5 1.514 23.998 260.989

4 0 25 26.040 1.6 1.774 23.174 182.1535 10 25 26.950 1.6 1.776 23.982 194.6706 20 25 23.984 1.6 1.603 21.500 188.652

7 0 25 23.940 1.7 1.634 21.424 180.7828 10 25 26.037 1.7 1.752 23.187 186.5449 20 25 27.766 1.7 1.658 24.819 236.237
10 0 25 25.325 1.8 1.818 22.511 164.49211 10 25 25.188 1.8 1.742 22.440 176.679
12 20 25 26.896 1.8 1.789 23.926 191.213

13 0 25 26.207 1.9 2.020 23.222 144.71614 10 25 26.284 1.9 1.881 23.331 166.16315 20 25 26.581 1.9 1.836 23.617 177.900

16 0 25 26.000 2.0 2.015 23.039 143.15517 10 25 25.068 2.0 1.876 22.254 151.880
18 20 25 26.476 2.0 2.021 23.460 147.584
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TABLE B-3, N • 250 and Shape Parameter Equal 2.0 - 2.5

Simple Percent
Number Censored E(x) X i

*1 0 25 24.476 2.0 2.104 21.678 117.223
2 10 26 26.605 2.0 2.147 23.473 132.560
3 20 26 27.163 2.0 2.020 24.068 155.524

4 0 25 25.263 2.1 2.184 22.373 116.729
5 10 25 26.646 2.1 2.071 23.602 142.957
6 20 25 26.016 2.1 2.276 23.045 115.090

7 0 25 22.595 2.2 2.079 20.014 102.081
8 10 25 25.165 2.2 2.082 22.290 126.272
9 20 25 27.227 2.2 2.252 24.116 128.451

* 10 0 25 25.664 2.3 2.216 22.730 117.36711 10 26 25.207 2.3 2.556 22.378 88.15912 20 25 26.006 2.3 2.419 23.058 103.245

13 0 26 24.950 2.4 2.292 22.103 104.538
14 10 25 26.426 2.4 2.447 23.435 104.468

S1s 20 25 25.957 2.4 2.374 23.006 106.331 j

16 0 25 25.662 2.5 2.490 22.767 96.563
17 10 25 26.282 2.5 2.416 23.302 105.697
18 20 25 26.208 2.5 2.417 23.236 105.035

I-
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TABLE B-4. N • 250 and Shape Parameter Equal 2.5 - 3.0

Sample Percent

Number Censored 
. E(x) V(x)

1 0 25 24.262 2.b 2.535 21.534 82.8382 10 25 25.532 2.5 2.565 22.668 89.8583 20 25 26.152 2.5 2.437 23.190 103.05440

0 25 25.741 2.6 2.465 22.831 97.9115 10 25 24.870 2.6 2.569 22.082 85.0216 20 25 26.853 2.6 2.774 23.903 86.829

90 2 26.027 2.7 2.043 23.252 87.642
12 20 25 26.334 2.8 2.914 23.486 76.778
13 0 25 24.546 2.9 2.704 21.830 75.82814 10 25 26.168 2.9 3.026 23.466 71.61215 20 25 27.227 2.9 2.913 24.283 82.091
16 0 25 25.083 3.0 2.901 22.367 70.178 2

17 10 25 25.996 3.0 3.100 23.248 67.30018 20 25 26.109 3.0 3.176 23.376 65.154

4
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TABLE B-5, N * 250 and Shape Parameter Equal 3.0 - 3.5

Sample Percent
Number Censored A _ E(x) V(X)

1 0 25 24.158 3.0 3.049 21.588 59.806
2 10 25 25.033 3.0 3.258 22.441 57.3603 20 25 25.607 3.0 3.189 22.931 62.237

4 0 25 25.825 3.1 3.228 23.140 62.0275 10 25 24.663 3.1 3.143 22.070 59.200
6 20 25 25.610 3.1 3.389 23.004 56.148

7 0 25 25.665 3.2 3.032 22.929 68.138
8 10 25 26.050 3.2 3.543 23.454 53.880
9 20 25 25.577 3.2 3.443 22.995 54.520

10 0 25 23.590 3.3 3.026 21.074 57.762
11 10 25 25.560 3.3 3.237 22.906 60.457
12 20 25 25.075 3.3 3.614 22.600 48.293

13 0 25 24.413 3.4 3.395 21.931 50.86914 10 25 25.768 3.4 3.462 23.171 54.83415 20 25 24.639 3.4 3.685 22.231 45.098
I!

16 0 25 25.200 3.5 3.552 22.692 50.221
17 10 25 25.484 3.5 3.589 22.960 50.455
18 20 25 25.830 3.5 3.481 23.234 54.600
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TABLE C-1, N • 100 and Shape Parameter Equal 1.0 - 1.5

Sample Percent
Number Censored A _ . V(X)

1 0 25 23.178 1.0 1.099 22.373 415.600
2 10 25 28.484 1.0 0.997 28.516 817.443
3 20 25 30.436 1.0 1.082 29.537 747.180

4 0 25 23.569 1.1 1.030 23.286 511.188
5 10 25 27.753 1.1 1.171 26.276 506.7556 20 25 26.699 1.1 1.137 25.498 505.449

7 0 25 29.079 1.2 1.164 27.580 565.0908 10 25 24.477 1.2 1 348 22.451 283.365
9 20 25 23.936 1.2 1.265 22.235 313.330

10 0 25 21.880 1.3 1.306 20.189 243.187
11 10 25 25.352 1.3 1.295 23.432 332.685
12 20 25 30.068 1.3 1.391 27.433 399.079
13 0 25 25.828 1.4 1.352 23.679 313.640
14 10 25 25.178 1.4 1.468 22.791 249.206
15 20 25 25.076 1.4 1.356 22.978 293.746

16 0 25 24.874 1.5 1.642 22.251 193.33117 10 25 25.526 1.5 1.381 23.315 291.978
18 20 25 27.881 1.5 1.481 25.209 299.958

238



TABLE C-2, N • 100 and Shape Parameter Equal 1.5 - 2.5

SampIe Percent
-U* Censored A A E(x) U
1 0 25 25.677 1.5 1.970 22.763 145.5232 10 25 25.802 1.5 1.470 23.353 261.0833 20 25 28.284 1.5 1.739 25.199 223.403

4 0 25 24.982 1.7 1.761 22.242 170.1485 10 25 26.609 1.7 2.069 23.570 142.8416 20 25 30.676 1.7 1.856 27.243 231.938

7 0 25 25.189 1.9 1.884 22.358 152.1808 10 25 26.307 1.9 2.115 23.299 134.137
9 20 25 22.409 1.9 1.763 19.949 136.580

10 0 25 23.490 2.1 1.890 20.848 131.500 I
11 10 25 26.654 2.1 2.090 23.608 140.722
12 20 25 23.775 2.1 2.130 21.056 108.133

13 0 25 25.297 2.3 2.182 22.403 117.32214 10 25 24.436 2.3 2.307 21.649 99.11415 20 25 24.798 2.3 2.561 22.017 85.016

16 0 25 24.991 2.5 2.298 22.140 104.40917 10 25 25.673 2.5 2.596 22.802 88.972
18 20 25 27.186 2.5 2.636 24.157 97.178
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TABLE C-3. N * 100 and Shape Parameter Equal 2.5 - 3.5

Sample Percent A
r C e 0

1 0 25 25.672 2.5 2.806 22.773 77.2362 10 2s 27.798 2.6 2.673 24.712 99.2123 20 25 25.351 2.5 2.774 22.6" 77.412
25 25.412 2.7 3.021 22.699 67.20710 25 23.864 2.7 2.823 21.256 66.5666 20 25 25.472 2.7 2.836 22.693 75.244

7 0 25 22.876 2.9 2.716 20.347 66.3508 10 25 24.891 2.9 3.496 22.394 60.329"9 20 25 25.791 2.9 2.498 22.883 96.030

10 0 25 24.755 3.1 2.938 22.086 66.89611 10 25 25.776 3.1 3.119 23.069 65.49412 20 25 26.556 3.1 3.371 23.847 60.940
13 0 26 27.079 3.3 3.637 24.414 55.69614 10 25 26.633 3.3 3.356 23.910 61.75615 20 25 25.906 3.3 3.346 23.254 58.731

16 0 25 25.802 3.5 3.421 23.188 56.10017 10 25 25.686 3.5 3.830 23.225 45.922
18 20 25 25.569 3.5 3.434 22.983 54.747
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ON THE ROBUSTNESS OF THE EXPONENTIAL DISTRIBUTION

George C. Canavos
Virginia Commonwealth University

Richmond, Virginia 4

BSTlCT. This paper examines the robustness of the expon-
ential time-to-failure distribution when this probability law is
compared against some logical alternatives such as the Weibull
and gamma distributions relative to estimation procedures involving
the scale parameter.

1. INTRODUCTION. Since the pioneering work on life test-
ing and reliability estimation during the early 1950's - see, for
example, (1] and [2] - the exponential distribution has been the
most widely assumed probability law in describing times to failure
of many types of components and systems. There is little doubt
that this distribution has played a key role in both theory and
application over the past twenty or so years. Surely, therefore,
it is of continued interest to query, "What if the assumption
of the exponential probability law does not hold? To what extent
then will such an occurrence affect subsequent inferences and
estimation procedures derived as a result of and depending on
this assumption?"

A substantive study on the robustness of the exponential
distribution is hereby attempted. Where possible, the treatment
is analytic. Particular attention is given to the estimation of
the scale parameter and the ramifications regarding the mean-
squared error (MSE) of its estimate if the exponential assumption
does not hold. The effect on the USE is determined as a function
of a situation in which the true sampling distribution of life-S times in not the assumed exponential but rather is either a

Weibull or a gamma. By following such a procedure, the degree of
robustness of the exponential distribution is measured and quan-
tified.

2. THEORETICAL DEVELOPMENT OF ROBUSTNESS. Let x1 ,x 2 ,...,xn
denote the times-to-failure of n like items. Assume that these
lifetimes follow the exponential distribution with probability
density function (pdf)

f(x;8) - exp(-x) x > (1)

where interest is on the estimation of the parameter 6. By
appealing to the likelihood function
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n

t(xi xx,...,xn;)- exp ( --

one can easily determine the minimum variance unbiased estimate
(MVUE) of 8 to be

n

Suppose, however, that in reality the lifetimes xi,xa,...,xn are
realizations of a Weibull random variable with pdf

h(x;B,a) x exp C- x") x > 0 (3)

where a is a shape parameter. Again it is a rather straightfor-
ward procedure to determine that the MVUE of 8 in this case is

n

Thus, if in reality the lifetimes follow the Weibull, the optimal
efficiency (in the classical sense) for estimating e is p"ovided
by the MSE of the MVUE estimator (4) which reduces to

MSE(e)w - (5)

Since the exponential distribution was assumed to accurately
represent the lifetimes XI,X2,...,Xn, however, the estimate of 0
is determined by (2). Thus, what effect would the fact that the
lifetimes follow the Weibull as opposed to the exponential have
on the MSE of the estimator given by (2)? That is, if in reality
xl,xa,...,xn follow the Weibull with pdf given by (3), then for
equation (2)

MSE(9) - var( ) + EfO - E(9)}1

where

E(§) = E( )
i ni

- 81/c r(l + 1)

and
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var(O) *var ( fnjSijul

_ var (xi)

S02/a (r(1 + 1) - r 2(1 + 1))

Hence after some algebraic manipulation, the MSE with respect to

the indicated perturbation is expressed by
vsI(e)sijw " ÷- (6)

e210(r(l + ) + (n - l)r2(l + } 2ne r( + 1)+ n
n

where the notation "EIW" indicates assumed exponential but in
reality Weibull sampling. A comparison between equations (5) and
(6) provides a measure of robustness relative to MSE in the assump-
tion of the exponential distribution when estimating the scale
parameter e. Numerical results are given in the next section.

Analogous to the previous discussion, consider now the gamma
distribution. As before, assume the lifetimes xi,xa,...,Xn follow
the exponential with pdf given by (1). What are the consequences
relative to the MSE of (2) if in fact the more appropriate proba-
bility law is the gamma with pdf

g(x;O') - r(oo-I exp(-•) x > 0 (7)

First, with respect to (7), it is easy to show that the MVUE of
e is

n xi

iln

while

MSE(O) G (9)

Then to determine the MSE of (2), consider

E(I) nE( xi
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while
n

var(9) -var (~ 1 )

1 

n

Si Ivar (xi)

0e2

n

Thus, the perturbed MSE of (2) reduces to

82( +z• n(1 - cL)2} 1MSE()ElG + (10)n

n

As before, the comparison between equations (9) and (10) should
reveal the degree of robustness of the exponential distribution
as measured by the MSE of the scale parameter 8.

3. NUMERICAL RESULTS. To evaluate the robustness of the
exponential with regard to the estimation of the scale parameter
when the true samDling distribution is the Weibull, the ratio of
equation (6) to equation (5) is formed. The notion here is that
since in reality the lifetimes follow the Weibull time-to-failure
probability law, then the best efficiency of the MVUE of e is
provided by (5). Thus the "perturbed" MSE given by (6) should be
compared to (5). Table 1 contains this ratio computed for several
values of 0, a and the sample size n.

By a similar argument, the ratio of equation (10) to equation
(9) is formed to quantify the robustness of the exponential
relative to the gamma distribution. However in this case, the
ratio is the simple expression given by

R 2{0 + n(1 - a) 2 }/n
R - 02 /na

= a(a + n(l - M)21

which is seen to be indenendent of the value of 6. For various
values of a and n, this ratio is given in Table 2.

4. CONCLUDING REMARKS. Based on the results contained
herein, it is apparent that relative to the estimation of the
scale parameter, the exponential distribution is extremely sensi-
tive if in reality the Weibull is the sampling distribution and
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Table 1

Ratio of MSE(O)Biw to MSE(S)w
1 "5

0.8 0.9 1.10 1.20 1.50 2.00 2.50

5 6.97 2.29 0.71 0.75 1.24 1.86 2.21
10 11.60 2.93 0.74 0.93 1.77 2.61 3.03
15 15.46 3.39 0.77 1.05 2.07 2.99 3.41
20 18.87 3.76 0.80 1.15 2.27 3.23 3.64
25 21.96 4.08 0.82 1.22 2.43 3.39 3.80
30 24.81 4.35 0.84 1.29 2.56 3.52 3.92
35 27.48 4.60 0.86 1.34 2.66 3.62 4.01
40 30.00 4.83 0.87 1.39 2.74 3.70 4.08

* 45 32.39 5.03 0.89 1,43 2.81 3.77 4.14
50 34.68 5.22 0.90 1.47 2.88 3.83 4.19

SnmlO__ _ _ _ __ _-

5 9.38 2.62 0.85 1.15 2.36 3.69 4.40
10 16.75 3.58 0.98 1.58 3.46 5.20 6.05
15 23.02 4.28 1.07 1.86 4.08 5.96 6.82
20 28.61 4.86 1.15 2.07 4.51 6.44 7.28
25 33.71 5.35 1.21 2.24 4.82 6.78 7.60
30 38.45 5.79 1.27 2.37 5.07 7.03 7.83
35 42.89 6.18 1.31 2.49 5.28 7.23 8.01
40 47.10 6.54 1.36 2.60 5.45 7.40 8.16
45 51.11 6.87 1.39 2.69 5.60 7.54 8.28
50 54.94 7.18 1.43 2.77 5.73 7.65 8.38

n=- 20 _

5 14.20 3,29 1.13 1.94 4.58 7.33 8.79
10 27.05 4.86 1,45 2.87 6.83 10.38 12.09
15 38.14 6.06 1.68 3.47 8.10 11.91 13.63
20 48.10 7.04 1.85 3.91 8.96 12.87 14.55
25 57.23 7.90 2.00 4.26 9.60 13.55 15.19
30 65.73 8.65 2.12 4.55 10.10 14.06 15.66
35 73.72 9.34 2.22 4.80 10.52 14.46 16,02
40 81.30 9.96 2.32 5.01 10.87 14.79 16.31
45 88.53 10,54 2.40 5.20 11.16 15.07 16.55
50 95.45 11.09 2.48 5.37 11.43 15.31 16.75
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the shape parameter is less than one. However, there is a modest
range of the shape parameter - say (1.0,1.3) - for which there
is substantial robustness on the part of the exponential distri-
bution. Moreover, the robustness is more apparent for smaller
smaple sizes and smaller values of 8.

For the case involving the gamma distribution, to some
extent the opposite appears to hold. That is, for values of the
shape varameter that are less than unity, considerable robustness
is apparent especially for small sample sizes with only a modest
amount present in the neighborhood but on the positive side of
one.

Table 2

Ratio of MSE(O)BIG to MSE(O)G

n
5 10 20

0.50 0.875 1.50 2.75
0.60 0.840 1.32 2.28
0.70 0.805 1.12 1.75
0.80 0.800 0.96 1.28
0.90 0.855 0.90 0.99
0.95 0.914 0.93 0.95
1.00 1.000 1.00 1.00
1.10 1.265 1.32 1.43
1.20 1.680 1.92 2.40
1.40 3.080 4.20 6.44
1.60 5.440 8.32 14.08
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"RANDOM INTERVAL RELIABILITY

Gerald R. Andersen
Headquarters, U.S. Army Materiel

Development and Readiness Cmd.
5001 Eisenhower Ave.

Alexandria, Virginia

Abstract. Simple expressions are derived for interval
reli&biliEty when, in addition to random life and repair times,
the time of request for system availability and the duration
of the mission occasioned by that request are random variables,
rather than numerical constants. The results constitute a
simple generalization of the interval reliability results noted
in Barlow and Proschan [1 ].

The investigation was motivated by the desire to discourage
the extensive misapplication of the result of H I p. 82 insetting reliability values for large scale Army systems in pro-
development requirements documents.

Introduction. Let r be a stochastic process whose value,
r (t), at a particular time t>O, describes the operating state of
some system at time, t. We will only consider systems with two
states, up (operable/operating) or down (in repair). Specifically,
we will say that the system is up at time t if r(t)-l and down
at time t if r(t)-o. We assume that V(o)=I with probability one.

Starting at time t-0, let XIY 1 ,X2 ,Y2 ,... denote the successive
lengths of time that the process, r, spends in the up or down
state, respectively.

Let

Tv - X+Yu , vl, (1.1)

SOM0 and define Sn by setting j
Sn 0 !TV 12

Throughout most of this note each of the sequences {X.i ).and
({Yi) will consist of independent and identically distributed (IID)

r.v.1s. In this case, {S n is the usual type of renewal process

. .. .. ' '"...... . . . . . .' -"L



rr
j used to study systems where the X£ s are the times to failure and

the Y,'s are the times to replacement or to repair to-original-

.I condition.

Associated with this renewal process, (S )n is the counting
process N(t), where

N(t) = k and S -S (1.3)
N (t) k

if, and only if,

k I t Sk(4)

The residual life'process, C(t), defined by setting

•(t) - 5 N(t) + XN(t)+l -t (1.5)

(t>O) is useful in investigating the probability that F(t)-l
dui'ing various intervals of time.

Since N(t) represents the number of times the process r(t)
returns to the up state during the interval (O,t), the event that
C(t)>3C coincides with the event that the system is in the up
state at time t and remains in that state for at least X units of
time

l•J(t)
I . . . . .... t+M .

0SN(t) BN(t)+XN(t)tL SN(t)+l

In section 2 we will obtain exact and asymptotic expressions
for the probability that C(T) exceeds the quantity M when both
T and M are random variables. This probability, that the system
is up throughout the interval [T, T+M], is called interval
reliability by Barlow and Proschan (I I p. 82, in the case where
T and M are non-random. It is interesting to note that many Army
documents, including a guide on reliability techniques [tO],
apply the result in ( I1 but with the claims that either t or M
are random.

The mathematics required to make this extension from the
well-known results in Barlow and Proschan, or Gnedenko [ 1p, or
Feller (11] is very simple, but in some ways the results are
reasonably interesting. In spite of this, it is doubtful that
one would announce the results of such a simple task if it were
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not for the insane realism that some practitioners of reliability
inject into reliability "requirements' as deduced frommathematical facts about residual life. This topic is •

• ~~expanded on in Example A of section 2. •i :

in section 3, we note the well-known fact that an

aysamptotic result of section 2 is the limit of a statistic
which given the percentage of time, during n renewals, that the
system is up and remains up for a sufficient amount of time to
support a mission of duration A A A result is then stated
concerning the asymptotic normality of a similar statistic
(one representing the percentage of up-time that the system
is available for a mission of duration X

Section 4 is an attempt to consider the interval reliability
problem when successive system life and repair times are not
identically distributed.

j 25
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2.0 Residual lifet independent and identically distributed
case. Let the sequences tX/ and (Y j of sedtion I be sequences
of independent and identically distributed positive random variables(r.Vo's) and assume also that (X} and (Y• are independent of

each other. Thus, in this section, the X 's have the usual
interpretation of time to system failure and the Y 'a the time to
replace or repair the system to a state which is as good as new.

We will denote the common distribution function (d.f.) of the
Xi's by O, of the Yj's by H and, where appropriate, use X to refer
to one of the X 's and Y to one of the Yj's. Set F equal to the
d.f. of T = X+Y. Let the positive r.v.'s T and M of section 1 be
independent of each other and of the sequences (XQ and (Y}.
Denote the d.f.'s of T and M by X and L, respectively. Although
termed a positive r.v., M will be allowed to take the value zero
with positive probabilityl especially, the case MwO with probability
one (a.s.). This allows "availability" as well as interval
reliability statements to be included in the same expression.
When M-0 (a.s.), the L-¢, where t will denote the unit d.f.' t

S=0, if y < 0
eCy) (2.1)

1, if y > 0

To avoid needless complications, we suppose that K(O)O
and G(0)-0 (the latter guarantees that passage of the system from
one down state to the next is never instantaneous). It follows
that F(0)-0. Let

U(t) - V F*k(t), (2.2)
kal

where F*k denotes the k- fold convolution of F with itself. It
is well-known that the renewal function U(t) < +- for each t
(0 ! t < +a) and U(t) - EN(t) (cf. section 1). Consult Feller [ti
for facts about U, but note that his U counts So-0 as the first
renewal of the process {Sn) and so equals l+U, U being given as
in (2.2). The definition (2.2) follows most "applied' probability
and reliability texts (e.g. [ ], [1], [Q]).

The physical meaning of these four sets of r.v.'s is as stated
in section 1. Mathematically, since we have assumed that all r.v.'s
are independent, we can, without loss of generality, take them to be
defined on the same probability space, Q .
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Set Q equal to the d.f. of the r.v. Z - K-M0o that

0(a) - f G (+y)dL(y) (2.3)

for all a in (-a,.).

Resultst We shall now state and discuss the results of this
seotion; if a proof In cumbersome it is placed at the end of the
section.

Thegrem 1. If EX, RY and Z3 are finite, then

pM M) a 7(X(z)+7(x(z+s)-x(o))du(s))dQ(z) (2.4)
0 0

Thus, (2.4) gives the probability that the system is up at
some randomly selected moment in time, To and remains up for a
random duration, M, of the mission occassioned by the request at
time T. By specifying only the d.f. of T in Theorem 1, we have
the following

Corollary1, If the re uest time T is exponentially distributedwith, mean 1i/%, ,">), then

,(C > 4) (l-_(•))" l-e'z)dQ() (2.)
T 0

where • is the Laplaoe-Stieltjes transform of the dof. F.

To verify the corollary from (2.4) just note that
k(s+u) - k(s) - e' la(-e'•'),

so that P( > ) - '{( ) + (l-e 2 ) I e dU(s))dO(z)
0

- (l+U()) 0(1-6 )dQ(z),
0

where U is the Laplace-Stielt es transform of U. Equation (2.5)
follows since O(M) - (A)/Cl- (X)) for all X>O (recall that F(O)w0).

* j Remark I It is both intuitively and analytically obvious that
(2.5) may be written in the form

P( Mr> M) - PC( i X-MT < X+Y). (2.6)

Intuitively, because the exponential distribution has no memory
and analytically, because

t(l-e0 )dQ(z) - P(T < X-M) - P( < X-M, T < X+Y)
0
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and

I -P(T < X+Y).
* Remark 2. The artificiality of the exponential assumption on Tcan be attenuated somewhat by noting that if x is taken to be amixture of exponentialat

X K(s) - rav (l-e'v) , (2.7)

V 0. for all L, Eav. 1, > 0 (that is, the tail of X can be
expressed as a Dirichlet series). Then (2.5) preserves in the form

4P(CT> ) a - (lF(XV))"1 p"iqe•JJ.S )d0(z)
V 0Remark 3. Set Q equal to the d.f. of (X-M)+ where S+ denotesthe function whith equals S if S>0 and 0 if S - 0. Then since

1--" vanishes at 0, the only point on (0,'.) where 0 and 0 differ,we can replace Q by Q and write (2.5) as +
.. '•.• . s ( C T • ) M ) . ( .1 -9 + • ) / ( - ( ) M M.

* This form not only suggests easy computation (simulation is easilycarried out from (2.6)), but it motivates the following observation:
,if X0+ (so that Er.+s), then, writing-,mT (X),

P•C ) M) - .. X-4)+/ (Ui+i 2 ) (2.9)
where U'l EX, Y2 - EY<+m and E(X-M)+ < EX < +W.

Just recgnize the RMS of (2.8) as the ratio of the differencequotients of 0 + and P; passing to the limit as X+O+ gives the
ratio of the means of (X-M)+ and X+Y (which both exist since

*EX < +a and EY < +=)

As one would expect, the limit in (2.9) is preserved if theexponentiality of request time is dropped and T(X) is replacedby any sequence (Tn) which converges in probability to +m.
Theorem 2. Let V1-EX and M2-EY be finite and T non-lattice. If
Tn (n_>l) is a sequence of positive r.v.'s and tn4+u in probability,
then

PC Tn> M) * E(X-4) +/(uI+U 2 ) (2.10)
n

as n +a.
The proof is at the end of this section.)
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temark 4. A simple calculation shows that

B(X-N)* a X(XMIxX>M) P(X>N) (2.11)

Also, if we let the minimum of two real numbers a and b be denoted
by aAb and observe the identity

(a-b)+ a a-aAb,

then we can express (2.10) in the following two equivalent forms
ifx) Ix)M ) 1,-K (xAM) -MT ;P Mx) + +1+. ) . p(x,>j CZ •1._12)

as n + +o'

When t40 a~s., the RHS of both (2.10) and (2.12) reduce to
the so-called "availability" of the system~* 1 /(.I+3 2 ). The last

relation in (2.12) is therefore especially intuitive since it
show' directly the amount by which the availability should be
decreased if one wants to account for the system being up through-
out a mission of (random) duration, M.'

In view of the above, it would seem to be appropriate to call

A() (2.13)

syatem availability for missions of length-M.

Remark S. When t>.O,g >0 are (nonrandom) real numbers and T-t,
M-X (a.e.) then The classical limit of P(Ct>*), as tV1, (e.g.
[I ], [4], [||]) agree with all the above-mentioned forms; just
note that f (y)dy - I(y-N)dG(y) - &(y-X) +dG(y), G- 1- G

Examples:

A. Let x be exponential as in Corollary 1 and, in this first
example, let X also be exponential with parameter 81 (EX - •1 " el1)
Whenever X has this distribution it follows from (2.3) that

SQly) - e L'(9 £.e 1),

where L is the Laplace-Stielties transfom of L. Direct calculation
then gives

Sa(l-c' Y)do(y) . ()/(X+e1)
0
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since
pa e el(X)/(X~e)

we find (using Corollary 1) that

'V,1+ (14 (A)

where the distribution of H and Y remain to ke specified. To note
the resemblance to (2.12) just observe that L(O )-P(X>M), in this

example. Of course, if we let ).04+ in (A.l), we would obtain a
special case of (2.12).

Now, if we further specify the distribution of Y to be

exponential with parameter 02, EY=02 O-2, we obtain (from (A.1))

R > ) = , , (A.2)

r 2 +r

Finally, taking M to be exponential also, (A.2) becomes

P (C > X) (A.3)
Uij+(e 2 ~

where u M wEM. So, in this case, P(CT >M) has the appearance of the

product of two "availability" terms.

If, instead of being exponential, M is taken to be degenerate
at*, i.e., L(s)-c(s-*), where e is defined in (2.1), it follows
from (A.1) that

P(C> M) - (1"4)
+ 1-( ).

with the distribution of Y unspecified.

Notice that if X40 in (A.4) (or just use (2.12)) the RHS of
(A.4) is U . • V~ (A. 5)

It is the almost exclusive use/misuse of this formula that

causes one to produce the variations on a theme found in this note.

?5
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Forecample, one objectionable use of (A.5) is to specify X and
Is and then to set the expression in (A.5) equal to some high number,
s8ch as .97, and solve for U,. (This, of course, is done with no
knowledge that the life distribution is exponential.) This u , call
it U0, is then claimed, in advance development documents, to ýe the
"required" mean-time-to-failure of the system; usually this is a
complex military system which has either never been produced before
or one for which we lack a substantial base-line of experience under
a realistic mission profile. To make matters worse, this value of

, and a similarly derived value, ul, obtained by setting (A.5) equal
to some slightly smaller number suck an .94, are used as the null
and alternate hypotheses, respectively, in a statistical acceptance I
plan. Note that when this so-called acceptance plan is applied, it
will be to a total population of perhaps one or two systems. More-
over, the system will be constantly undergoing design changes and
differing conditions of stress. Needless to say, such practices often
produce a reject signal from the testing community. If, on the basis
of experience and common sense, the systems under test are judged to
do their job reliably, at reasonable cost and more effectively than
any system in the arsenal, these reject signals are properly ignored,
but often not without the significant costs of re-tests, check-tests,
needless re-design and a near infinity of meetings, briefings and
"analyses".

The purpose then of the present note is to furnish Army statis-
ticians with two more "degrees-of-freedom" (mission and request time
distri.butions) in numerous formulas that will aid him in convincing
the occasional naive practitioner of reliability that applications
of (A.5) as described above are a totally unrealistic way of setting
reliability requirements. This can be done by producing a wide
variety of answers with judicious choice of distributions for mission
and request times. The variability obtained through distribution
which cannot be predicted might be enough to convince the R&D com-
munity to state reliability figures-of-merit as goals-to-point-toward
and not hard requirements to be "demonstrated" in some psuedo-statis-
tical teet. The only possible danger is that the results stated in
this paper will be misused in the same way as (A.5). It should be
emphasized that designing reliable military systems is of the utmost
importance and it is not the purpose of these remarks to argue other-
wise. On the contrary,-it is hoped that by discouraging an absurd
approach to setting reliability requirements emphasis will be placed
on engineering reliability into new systems.

Before concluding example A, consider two additional distributions
for M. First, when M is uniformly distributed over (OT):

1-e-O iT
P(C > M) - 8T (A.6)IT u+(•+e 2)
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with t, X and Y exponential as above.

The second is when M is normally distributed as Nl(ypa)
conditioned to be positive. Then

P ( ) - • exp(-(01y- -

22 a() CA.?)

where ' is the d.f. of the standard, N(0,1), normal r.v.

B. Because of the ease of calculation we consider the case
when 3ris Rayleigh (a),

_:: e-s 82/20i;i
•:• P IX>el a

and M is Rayleigh (a). Then
0• r e'S/2•"' e'a/2O d

EXAM! e* ' ds
0

, e-*~s0/20'tds
0

where 0 = a/ltl+O and so

E(X-M) - EX-EXAM a (1- -

Since EX- a, we therefore can write (2.13) in the form

A.X a (o1)

A (1 0) (1- (B. 1)

Another simple application of Theorem 2 is obtained when X

is Gamma (2,0):

P(X>s) - (a+8.)

and M is the square of a N(O,0) r.v.. Then (after some tedious
calculations),

SAIM) - A(0) (91.5••1l.2)
A 1(1+2a'B) 3/2
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C. We now return to Theorem I and show its relationship to f
some S-own results on availability, without using the exponential

assumption of Corollary 1, for the request time distribution.

U'br this purpose, let the request time be a fixed constant,

for all wcf. Then K(x) - c(x-T), where c is defined in (2.1).

Then the function
•.~~~ ((,)=xs+z) k k(s) ,

in equal to one in the unbounded region defined by 0 < s < T, and
a + z > T and zero otherwise.

It follows that the RHS of (2.4) is given by

S'X(y)do(y)f÷ I (K(s+y)-K(s))dQ(y)dU(s) - (C.1)
0 0 0

IDdOQ(y) + I ý(T-s)dUls) W m- . .
T 0

For ease of computation, let X, Y and M be exponential with

l-eVI, u2 e02  and EM-um '", respectively. Then it is easy to

show that
U *t) 1t -at)),

where -iOI+P 2 and a-8 1 +8 2.

Since, U(y) - a exp(-e 1y)/(el+a), for y>O, we obtain ((2.4)
and (C.L))

(4)T > M) = 1 Ul12-- (C.2)

Notice that if T-+., (C.2) becomes (A.3) with X-0 as it
should. Also, If iMn0 In(C.2)then (23) of [12l Is obtained. J
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ProOf of Theorem 1. Proceeding either with a standard Renewal
theory argument or directly from the equation for the d.f. of &to
t nonrandom, in. EI p. 0Oor I III p.3 we obtain

P ) -'e) (t) + -,*U(t), (2.14)

where Q is given in (2.3). Alternately, this is a special case
of a more general (non-identically distributed) case derived in
section 4. Since K(O)-O (K-d.f. of T)

I Q(t)dK(t) - I X(t)dQ(t)

Consider

sA•*UWt)dUMt) - ItI :(t-y)dU(y)dK(t)
o 0 0

- 1/ f(s)dK(s+y)dU(y) and observe that this last
integral, cahoit 1, is finite. This follows from ET<+w, and
the well-known fact that U(y)rqy/v as y-, since then

I -e I (l-K(y))dU(y) - I U(y)ld(y) -w (Er) - +4-
0 0

(we have made use of the fact that U(y)(l-Kly)),%1 yll-Kly)),0
if ET < +O). Now

f a (s)di(s+y) - -4(o)7(y) + f •(s+y)dQ(s)
0 0

so that

I ,*UWt)dK(t) = -I1 (a(s)dl(s+y)dU(y)
o 0 0

- ?(O)I K(y)dU(y) -I I K(s+y)dQ(s)dU(y)
0 0 0

" 1 40 K(y)dU(y)dQ(s) - e*/ f=(s+y)dQ(s)dU(s)
0~ 0 0

* U

- I I (K(s+y)-K(y))dU(y)dQ(s)
0 0

Proof of Theorem 2. The sequence Tn,+= in probability if given
>0f, A>O there exists an integer no-no(cA) such that

P(rn> A) > 1-c if n>nof
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Letting X be the d.f. of Tnu nitl, we can write

SPn PI Tn> 4) - U(t)dK n(t) + Q_*U(t)dln(t)n 0 0
• " - ZI l n ) + J l n ).:

NOW, let C>0 be arbitrary and choose A>O such that I(A)'P(X-M>A)4g,:i ~then,

0 •_ IC inA a(t)dgnMt) 1C(t)dK Wt)+.0 A n

-A
-.. £ Xn(A) + c(l-Kn(AI))+

:~<. Kn(A) +
n

so that

0 •imsup I(n). c
n+4

Therefore, since t)0 is arbitrary,

lim I(n) w 0.
nm

For the term J(n), we of course follow the usual proof anduse the Key-Renewal Theorem. This places an integrability require-
ment on Q which is equivalent (in our case) to showing that
J 1(t)dt < +a. This follows from EX < +c. The assumption that T
is non-lattice is trivial in our application and can be guaranteed
by requiring, for example, either X or Y to have absolutely
continuous d.f.'s.

The Key-Renewal Theorem then states that

,U*(t) + ! (y)dy
0

as t " += where Wu-jI+P2. In what follows, call this limit B.

The wgument for J is similar to the one applied to In. Thatn n

is, by the previous limit, there is some C such that Q*U(t) iswithin a preselected distance 6>0 of B for all t>C-C(6). Givensome E>0,the convergence to +- of Tn is then used to find an
A no-no(c,C) so that P(Tn>C) 1i-E if n>no. All this allows us

to conclude that both
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7 (*u(t)dKn(t) _ (B-6)P( rn>C) > (B-6) (1 - B-0 Sc n ]

and

Q,*U (t) d W (B+6)
if n>no.
Since, also,-

C
0 < I Q*U(t)dKn(t) W O(P(T C) - *(1)

n ný
as n--, we have

lim J(n) - B - dt
n-*w 0

It remains to evaluate the integral of 5: (Recall EX<+w)

f (y)dy = f P(X>y+m)dL(m)dyooo

- I I P(X>y+m)dy dL(m)
0 0

- fwfaP(X>s)da dL(m)J0 -
I f P(X>s) I'dL(lr.)ds
o 0

-I P(X>s) P(M<s)ds
0

- EX -1 P(X>s, M>s)ds
0

- EX -1 P(XAM>s)ds
0

a EX - E(XAM)

where XAM - minimum of V. and M. Clearly, 0 _ EX-E(XAM) < EX < +•.
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P!1
3. Additional Comments on the lID Case. Using the stochastic

model of section 2, the percentage of time, during n renewals of
the system, that the system is up and remains up for a sufficient
amount of time to support i mission of length X is given by

n +ni~ -"

(n>l). (Throughout this section, * will be a strictly positive
real number.) Assuming that ET=EX+EY<+-, it follows from the law
of large numbers and Slutsky's Theorem (of. Cramer [3] p. 255) that

pn( E(X-J) , (3.2)

in probability as n4-, U*u•+u 2 -EX+EY.

Thus, the statistic p (n) is a consistent estimator of the
quantity E(X-b )+/u, the ubiquitous limiting interval reliability
of [1, and a special case of Corollary 1. The simple, practical -
nature of pn (M probably explains the interest in describing

systems by means of interval reliability.

A related statistic with similar intuitive appeal is
n + n

n(*) - E (Xi-X) / EXi

Clearly, this statistic gives the percentage of up-time that the
system is available for a mission of length * and is a consistent
estimator of the quantity W(a)-E(X-*) + /uI. From Corollary 1 of

section 2, this quantity is also easily seen to be the limit of
the probability that E >* given that > 0 as n-*, when

T n*+, in probability. n n

Using the work of Skorohod [711 Chapter 1, Sec. 6, Pyke [7],
Pyke and Shorack [ 1], and arquments similar to those in recent
work of Barlow and Proschan [( 1, it can be shown (under additional
assumptions) that " OPn(A) - 1(*)) converges in probability to a

normally distributed r.v., N(O,aCoe)), where the variance can be
calculated explicitly, in terms of *), ul, Var X, Var (X-i 4)+,

and the d.f.G. The proof is outside the scope of this note and
will be reported elsewhere.

The usefulness of such a result is that it places emphasis
on *n(X), a directly measurable quantity, rather than on P(X),

which requires a distributional assumption.
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(4.0). Residual Life: non-identically distributing case.

In this section we suppose only that the sequences (Xi} and (Yj}

of positive random variables are each sequences of independent
r.v.'s and, further, that the sequence {Xi is independent of the
sequence Y }.

Let Gi be the distribution function (d.f.) of Xi, i>, Hj
the d.f. of Y#, J1l, and sot Fi equal to the d.f. of Ti-Xi+Yi, P1.

As before, let M be a positive r.v. with d.f. L and assume that 14
and the {X and (Y sequences are independent.

Set d.f. of the r.v. Zi- Xi-M, so that

S-.+Gi (z+y)dL(y) (4.1)

for all z in R

Finally, observe that since we have not assumed that the

TV 1 l, are identically distributed r.v.'7, it is possible for

the partial sums Sn of section 1 to converge to some proper r.v.
*• 1 in distribution (and hence with probability one (a.s.) on •).

For simplicity, we want to avoid this possibility and retain the
property of IID r.v.'s which states that Sn-+- (a.s.). Thus,

when we consider an instance where Ixj converges, the divergence

of Sn to +w will be guaranteed(even though the Yi's are not

identically distributed) by assuming that fyi0+W (a.s.).

Now, recall the definition of &t, for non-random t>O, given
in section 1 and partition the interval [Ow).by the sequence of
partial sums Sn, n>O. Then

P(Mt> = E P(Et> M, Sk< t < Sk+l) (4.2)

kWO

- P(&t> M, t<Sk+liSk-• )(-(Sk! .)

k-O 0

St
Ek• P (Xk lM>t-.X, t-*•<Tk+)dP(Sk )

10 t k
r [ P(Z > t-W )d.T*F V(X) + p(z>

k=l 0 k+l j=l )
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Swhere, after conditioning on Sk we have used a familiar property
* of conditional probabilities (cf. Krickeberg [b6 p. 170 problems

3 and 4), the independence of Tk+l and Sk and, for the last
equality, the fact that the occurrence of the event (Zkl> t-*]

implies the occurrence of the event [Tk+l>. t-% ]. Therefore,
using the d.f.'s introduced above and the usual notation for a
convolution product:
lk

TT F -.( 1*0*F M-P(k!t

we can write (4.2) in the form
= k

P&t>H) ri (t) + E kln*j- (4.3)•i k-1 Jul•

where l-Q and tjO.

It is easy to see that under the assumption of the last
section (that is, where the sequences are identically as well as
independently distributed), the last equation reduces to equation
(2.14) of section 2.

Let the r.v. n(M) be the amount of time that the random
function t-1t is greater than M. If I is used to denote the

tI
indicator function of the set of positive real numbers; that is,

1, y>O0

Ily) - (4.4)S0 , y < 0

then n(M) can be written as

n(M) W - M)dt (4.5)
0

Of course, n(M) may be a defective r.v. in the sense that it
may take the value +- with positive probability. Taking expectations
of both sides of (2.5) it is easy to see that

En(M) - I P(ýt> M)dt (4.6)
0

whether the RHS is finite or not.
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We note in passing that the case when the underlying stochastic
structure consists of sequences of ZID r'v.'s, the RHS of (4.6) is
infinite. This fact might motivate one to ask whether or not this
integral is Abel summable to a finite value. That is, does

AMX - I Ae'Xt Plgt> Mldt •
0

converge as X*O+? It in amusing to recognize this integral as
P(Ct(£)> M), where )(A) is an exponentially distributed r.v. and
apply Remark 4 or Theorem 2 of section 2 to obtain
A(A).p' E(X-M) +<+o as X-*O+, itf j< +G.

Alternately, use only the classical case with M random, then
an application of the Dominated Convergence Theorem gives

AM() - f QeYp a M)dyo-iE(X-M)+
as X-+O+. '?

Returning to the non-IID case we can state the foflowing

Theorem3 : If the series I ,(Xv-M) <+a then

a +
or,(M) W E EC 4XV) (4.7)

Vl

This follows easily. Just let Vn(t) denote the general term
in the series (4.3) and note that

a -M)+f Vn (t)dt - E(Xn+l-.)
0

Then since the V are non-negative and integrable over (0,-),

and the series of integrals of the Vn converge, equation (4.7)

follows from a well-known result about interchanging summation
Sand integration (e.g. page 114, (2) (5 1). This proves (4.7).

This equation then shows that n(M) is a proper r.v. and

a+
nlM) E (X- M)

with probability one.

268



:~

A simple example of (4.7) in obtained hy assuming that .both X and M are exponential with mean values a•and C,

respectively. Then E(X -M)÷+ - =,v-EXvAM 0 1•/(e +c). Then if I
we take e8, C/v, 3() - -)C.
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CONFIDENCE INTERVALS FOR A SUM OF REUNEWAL
PROCESSES WITH APPLICATION IN RELIABILITY

Ronald L. Racicot
Research Directorate

Banet Weapons Laboratory
Watervliet Arsenal

Watervliet, New York 12189

ABSTRACT. In reliability theory, the time flow of failures of a
non-constant failure rate component which is replaced or renewed upon
failure forms a renewal process. The inter-arrival times of failures
in this case are independent identically distributed positive random
variables* If a system which is composed of a number of such components
is considered to have failed if one of its components fails, then the
total number of system failures is a sum of tý:'indivtdual renewal
processes. The problem considered in this paper is the computation of
confidence intervals for the total number of system failures over a given
period of time from total system tests and/or individual component tests.
Although the application considered is one from reliability theory, the
results are applicable to general sums of tenewal processes.

In solving this particular problem, the reliability engineer often
assumes that the sum of renewal processes asymptotically approaches a
non-homogeneous Poisson pro.cess or, after a long period of time, a homo-
geneous Poisson process with exponentially distributed inter-arrival
failure times. For these processes, a chi-square distribution can be
used to determine confidence intervals for total number of failures from
which confidenced reliability or MTBF can be determined. It can be shown,
however, that the Poisson process is strictly a local property for sums A
of renewal processes and that confidence intervals derived from these
assumptions are generally incorrect. This is shown by comparing the true
variance of the number of system failures with the variance derived assum-
ing the Poisson process.

A scheme for computing confidence interval. is presented in which
the first 3 moments of failure times of the component processes are used
to compute the mean and variance of total system failures. For a large
number of components, the normal distribution adequately describes the *
distribution of system failures from which confidence intervals can be 4
estimated.
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AON.

f(t) pdf of inter-arrival times of failures;

F(t) cdf torresponding to f(t);

(T)- 1(t);

h(t) renewal rate; the unconditional pdf of component failure
and subsequent renewal;

hj(t) renewal rate for component J;

H(t) expected value of the number of system failures over the
interval (Ot);

"" a (t) renewal, function for component Jo; the intesral of hj(t)
over the interval (O,t);

11(t) point estimate ,,f H(t);
b

Htrue(t) true value of H(t);

SN(t) number of system failures over the interval (O,t);

Nj(t) number of failures of component j over the interval (Ot);

nc number of components;

lnf number of component failures;

nm number of missions over system life;

PN(t) probability of N failures in time t;

R(tT) reliability at time t fo. an interval T;

R (tT) reliability of the jth component;

Ra(Tfl) average interval-raliability over system life for interval
T and number of intervals nm;

R5 (tT) system reliability at time t for an interval. T;

R a(¶.) average system reliability;
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t system tims;

Weibull shape parameter;

Weibull scale parameter;

4jIl mean Inter-arrival failure time for component J;

third central moment of Inter-arrival failure tines "1
for component J; '

o2 variance of inter-arrival failure times for component J |

and

T interval or mission length for which reliability Is

required.

1. INTRODUCTION. The general problem is to determine confidence
intervals for reliability of a series system of components from test data.
Previous solutions to this problem have been limited to constant failure
rate components, binomial mission reliability which. is constant in time
and/or reliability for only the first system failure [1,2]. The case con-
sidered in this paper which Is often of more interest to the reliability
test enginer involves a system comprised of mechanical components which
follow non-constant failure rate distributions. The system is operated
continuously ntil failure of any of its components occurs at which time
the component is replaced or renewed and system operation continued.

For the single component which Is replaced or renewed upon failure,
the renewal rate h(t) describes the unconditional failure rate of the
component and is derived from the underlying distribution of inter-

arrival failure times [3,4]:

H(t) f(t) + tf(t-x)h(x)dx. (1)

The renewal rate is distinguished here from the hazard or conditional
failure rate which describes failure of a non-repairable item.

Interval or mission reliability can be determined from the renewal
rate [5-7]:

f; t+T

-1 - j I(t+T-x)h(x)dz (2a)
t

t+'r
1 - f h(x)dx for small T. (2b)

t
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For practical applications, the transient interval-reliability can
be average over system life to yield a single time independent relia-
bility index that characterizes a given component:

1 *
Ra(T•,f) -- R R(ti,¶) (3)

n1 iLl

For a series system of components

ne
R (tr)- TT R (tT) (4)

J-l

and ,,

nm ncj-Rea (T ,1) I T T R (ti$r) (5)
n3i-i i-i

The time flow of failures of a non-constant failure rate component
which is replaced or renewed upon failure forms a renewal process [3].
The inter-arrival times of failures in this case are independent iden-
tically distributed positive random variables. If a system which is com-
posed of a number of such components is considered to have failed if one
of its components fails (soeies system assumption), then the total number
of system failures is a sun of the individual renewal processes. The
problem considered here is the computation of confidence intervals for
the total number of system failures over a given period of time from
total system tests and/or individual component tests. Although the ap-
plication considered is one from reliability theory, the results are
applicable to general sums of renewal processes.

Many properties of renewal processes and sums of renewal processes
are covered in the literature; so only the final results are summarized
here 13-7). If N4(t) represents the total number of failures of com-
ponent j over tQm interval (O,t) then for the system

n.
N(t)-. I N i(t). (6)

jul

For components which fail independently of one another, the mean and
variance of N(t) is equal to the sum of the mean and variance of the
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component processest

no

H(t) - S{N(t)) - • li(t) (7)
Jul

dH(t) n.
h(t) a -- - he(t) (8)

dt J-l

4. n.

Var{N(t)) - X var{Nl(t)). (9)
J -1

For small mission time interval T and a large number of components,
the average reliability (5) can be shown to asymptotically approach the
following value (5]t

:1
Rsa(r~n.) Hl (10)

In reliability applications then, where the above assumptions hold, it
suffices to deal with K(t) for the system with reliability being deter-
mined from (10).

2. NON-HOMOGENEOUS POISSON PROCESS AS AN APPROXIMATION TO N(t).
In considering the problem of non-constant failure rate components, the
reliability engineer often assumes that the sum of renewal processes
asymptotically approaches a non-homogeneous Poisson process (NHPP) with
increasing number of components or, after a long period of time, a homo-
geneous Poisson process (HPP) with exponentially distributed inter-
arrival failure times (5). For these processes, the chi-square distribu-
tion can be used to determine confidence intervals for total number of
failures from which confidenced reliability or MTBF (mean-time-between-
failures) can be determined. In what follows, however, it is readily
shown that the Poisson process is strictly a local property for sums of
renewal processes and that the global confidence intervals derived from
these assumptions are generally incorrect.

The distribution of number of failures for the NHtPP is given as

H(t)PN(t) _ a~) H"(t) (11)

P{N(t)) - N (t) (12)
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Var(N(t)) H 1(t) (13)

It suffices to show that the true variance of the sum of renewal
processes dose not generally equal H(t) as shown by (13). Consider,
for example, the asymptotic renewal process for large t In which the
mean and variance for component J are given by [31

li_, "J MJ(t)U (14) j Lj

o2
r( t5)

in which ih and a2 are the mean and variance of the inter-arrival

failure times. Using (7) and (9) gives

Jul ut 
t

x( ) ' . (17) +

Var{N(t)) 17) I
Jul 3

In general, H(t) 0 Var(N(t)} and the sum of renewal processes for this
example does not approach a NHPP or HPP in a global sense no matter how
large n€ becomes. For equal components, for example, 1/U a 0 2/j3 unless

0-2.1A .This is the case for the exponential distribution but is only a
special case for other distributions. Although the asymptotic process
for large t was considered, the same can be shown for the sum of
ordinary renewal processes.

3. CONFIDENCE INTERVALS USING COMPONENT MOMENTS. Since the sum
of renewal processes (6) is a sum of discrete, lattlce type random
variables, it asymptotically approaches the normal distribution as an
envelope with Increasing number of components (8]. Confidence intervals
then can be estimated for H(t) using normal tables for large number of
components with Hi(t) and its variance being determined from test data.
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As vill be shown later, an extra failure should be added to fi(t) In
determining upper confidence limits to remove bias.

The renewal function for component j can be oetiested from the
souents of the Inter-arrival times of events for large t .(3].

; €71.ut 2-7

0a 2 t 4

Var(Njo(t)) "J + + .5 L - Z ) + 0o(1t) (19)
I 3  123

for the ordinary renewal process and

11jo(t) (20)

'1;

j 4
"Var{N W) + + + 0(1/) (21)

II3 2V 3U 3

for the equilibrium renewal process. In the ordinary renewal process
all components or* new at t-O. The equilibrium process, on the other
hand, is one which has boon running for a long time before it is first
observed (see Cox [3], Chapter 2 for more detailed description of those
processes).

Case 1: Complete Samples with larse t

For this case the moment@ can be estimated without making any assump-
tion about the underlying distribution:

A nfj
U - x1i/nfj (22a)

2 Ufj 2
Oj2 - (xji-fl1j)/(nfj-l) (22b)

277



* nf I (xj i-1A) 3 /(nfj-1) (nfj-2) (22c)

Var(lH t)} - Var{Nj(t))/nfj (23)

in which xi, i-l,..., ff are nf4 failure times for component J. Sub-
stituting x22) into (18),'(19) ana (23) or (20), (21) and (23) yields

component estimates for Hj(t) and Var(HIj(t)}. System H(t) and its var-

iance can then be determined from (7) and (9) from which confidence
limits on the true value of H(t) can be estimated using normal tables.

Case 2:. Censored Samples

For this case, a theoretical distribution for inter-arrival failure
times must be assumed, much as the Weibull or gamma, with the moments
being estimated, for example, using maximum likelihood. Confidence
limits can then be determined assueing the normal distribution for total
number of pooled failures.

4, SOME NUMERICAL RESULTS FOR CASE 1

A particular example has been considered to study the frequency
exactness of the confidence limits described above. For this study
Monte Carlo simulation is used to artificially generate sample outcomes
for a system with given component parameters. The system is assumed to
be composed of nc idsntical Weibull components with parameters n and 0.

Using these parameters, failure times for a given number of failures are
generated for each component using random numbers with the quantities
Pi. Ar2 and U3J being computed from (22). From these Hi (t) and

A

Var{Nj(t)) are computed using (18) and (19) vhere large t is assumed.

Estimates for the system H(t) and Var (61(t)) are then determined from (7),
(9) and (23).

Assuming the normal distribution for 1(t), confidence limits on
H(t) can be determined trom the given set of sample outcomes. This is
repeated 1000 times for a fixed set of parameters. The normal cdf,
gauf (H(t)), is evaluated at the true and known value of H(t) for each
of these sample outcomes. For exact frequency confidence intervals,
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II

the function gauf (Htrue(t)) should be uniform on (0,1.0). lasults

indicate that although the confidence limits are not exact, they are
close enough for practical purposes.

"Table I lists some of the results of these trials for the upper
902 confidence limit on H(t) (lover 90% confidence limit on average
reliability). An extra failure had to be added to the total number of
system failures to remove bias. For exactness, the percent of trials
in which Htrue is greater than the upper 902 confidence limit,
A

H90, should be 10%. As can be seen from the results In Table I, the

confidence limits are close to this requirement. The confidence limit

H90, therefore, is judged to be exact for this case as long as one extra

failure is added to total rnumber of test failures.

The main limitations of the above approach are the requirement for
long system times and large number of components and/or failures for
exactness. Also, in computing reliability from H(t), small mission times
(high reliability) are required for the approximation (10). The compute-
tional methods involved, however, are relatively straightforward and the
approach appears to be a sound one.

TABLE I

RESULTS OF MONTE CARLO TRIALS TO STUDY UPPER 90Z
CONFIDENCE LIMIT FOR SUM OF RENEWAL PROCESSES

NUMBER OF NUMBER OF 2 OF TRILS

COMPONENTS FAILURES PER H true(t5) Htrue > Hg0
COMPONENT

10 10 51.7 9.8

10 5 51.7 10.6

S5 5 25.8 9.6

S2 5 10.3 7.1

A2

S90 PERCENTILE OF DISTRIBUTION GAUF (H+1, Oa-)

WEIBULL COMPONENT PARAMETERS: n = 1.0, 8 " 3.0
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DETECTING AN UNKNOWN SIGNAL IN A MULTIPLE OBJECT. TELEMETRY SITUATION

John Bart Wilburn, Jr.
Instrumentation and Methodology Branch

US Army Electronic Proving Ground
Ft. Huachuca, AZ 85613

ABSTRACT. The problem is that of detecting anomalie patterns in
environmental grid data approximately coincident with a point stimulus
in the region including all data sources.

The particular case involved is to replace the current, rather awk-
ward, technique with a more concise and efficient alogorithm for detect-
ing anomalous growth patterns of tree-ring chronologies approximately
coincident with volcanic eruptions.

STATEMENT OF THE PROBLEM: The problem I am presenting here is a
problem arising in my climatology research on estimating climatic anoma-
lies following volcanic eruptions. People have long suspected that such
anomalies would occur. (Franklin, 1783 Diary) It seems as no surprise
to most people that something as majestic as a volcano should perturb
climate and yet compelling evidence has not been found, probably due to
the short length of meteorological data records available and/or improper
methods of analysis.

I am estimating these climatic anomalies by computing a regression
model for climatic variables such as seasonal temperature and precipi-
tation averages based on tree-ring chronologies. In this way I am hoping
to attach to a much longer record of data. The regression model is a
principal component regression calculation which I discussed at this con-
ference last year; and uses continuous tree-ring chronologies and a con-
current meteorological record taken at, or near, the tree site for which
the model is computed. That is, for each tree site there is one model
for each climatic variable for each season.

With these models, or transfer functions, I estimate the climatic
anomalies following volcanic eruptions by applying anomalous sequences
of annual tree growth rings following those eruptions as input tu thd
transfer function.

The problem I am presenting here is how to improve the accuracy of
the detection of anomalous tree growth due - probably - to volcanic
activity and to perform the detection more economically.

This may not seem related to telemetry in the usual sense; however,
I contend that it is, or has within it, a problem in multiple object
telemetry. In this case, telemetry is interpreted as the receipt of a
signal transmitted by a sensor operating in an environment wherein the
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signal is supposed to contain information about it's environment.

In my case, the sensor is the tree. The signal is the chronology of
Sit's annual growth rings. These growth rings differ in width in response

to climatic conditions present at the site. Figure I illustrates a section
of a chronology and a graph of the ring widths. As one can see, this signal
looks very much like many other kinds of signals one may encounter in a
telemetry operation.

The signal is supposed to contain information about the climatic con-
ditions at the tree site during the time that the growth ring was influ-
enced. A considerable amount of work done, and currently underway, at
the Laboratory of Tree Ring Research at the University oi Arizona supports
this supposition. The problem is that not all tree ring chronologies are
indicative of climate, Only sensitive trees have chronologies which re-
flect their past climate and then only when properly interpreted.

There are many factors which influence a tree's response to a partic-
ular climatic variable. Topography is the primary class of these factors
which include: water runoff, exposure (north or shady side versus south
or sunny side), altitude (growth season), subsurface conditions influenc-
ing root structures, availability of ground water and density of tree
growth. However, these factors are, for the most part, reasonably con-
stant over the time period considered; that is, a few hundred years. Thus,
the sensitivity of a tree to climatic change can be considered to be reason-
ably constant except when it is obviously not true as in cases such as fire,
earthquake, etc. Figure II illustrates these opposite conditions, compla-
cent and sensitive trees, as a function of topography.

A sample illustration of this sensitivity is shown when we consider
a tree which is living in an abundant environment (as seen by the tree)
with a surplus of water. This tree would have a "complacent" ring series
because such a tree will not suffer much, if at all, during a relatively
dry growing season WiLn less, but still adequate, precipitation. However,
a farmer in the same area with a crop tuned to the normal precipitation
(abundant from the tree's point of view) might consider that dry spell a
near disaster. This complacency is compounded when one notes that most
trees tend to integrate over several years with the emphasis placed on
the climate of the year preceding the current growing season.

The point is that one may see that a given species of tree may have
many different responses tc highly similar climates, depending on the
specific locations of the trees and the condiLionb preceding the current
growing season of up to three years.

Now it is possible to see the nature of the problem I am addressing.
As shown in Fig. III, I have selected, as sensors, ten tree sites; all
Douglas Fir and all with fairly high variance in the chronology as an
indication of sensitivity. These ten tree sites, indicated by the dots,
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constitute a grid of climatic sensors, each of which has a response
function defined only for it's own location, but, which has been assumed
to be reasonably time invarient.

Now the problem becomes somewhat more complicated. This in because
I am looking for the result of an unknown, but probably different response
function to the output from another response function, which Is the &tmwo-
phere, also unknown and responding to a point stimulus (the volcanic erup-
tion). It is the nature of this atmospheric response function that I would
like to eventually learn something about from the regression-based anti-
mates of the climatic anomalies mentioned earlier.

The response of the atmosphere to this stimulus at some location on
the earth is, most likely, some function of: the type of stimulus; that
is large, smell, duration, etc; the location of the tree site (sensor);
the time lag from the eruption; the time of the year and the initial con-
ditions at the time of the year.

The response function of the trees to the atmospheric (climatic) con-
ditions is some function of: the season; it's own serial correlation;
it's initial condition and it's location (topography). The response
function of the trees omits the physiological variables as I an consider-
Ing them as explicit since I am not modeling the tree growth.

was The first part of the project, which is the subject of this paper,
was to detect the anomalous, indirect response, if any exists, of the
trees to volcanic eruptions. To date, the method of detecting these pos-
sible anomalous sequences of growth rings, or anomalous signals, has been
as follows: First, I considered only one site at a time; thereby permit-
"ting me to ignore all parameters relating to location. Second, the tree
integrates over all seasons; so, for the purposes of signal detection, I
must ignore season. Now then, it must be remarked that the amount of
change in the tree's variance due to volcanic activity may be only a
very small portion of the total variance in the tree ring chronology.

Assuming that the chronology is a weakly, stationery, random series,
a kind of signal averaging was accomplished to detect a possible average,
or typical, response signal of the tree to specific "types" of volcanic
eruptions.

The tree ring data were formed into a lagged array, as shown in Fig.
IV, wherein the lag is fourteen years. The lag is more than sufficient
to accommodate the serial correlation of about three years and is guessed
to be sufficient time to cover any lag of the propagation of the atmos-
pheric phenomena. This lag also side-steps two favorite cycles: lunar
and solar.

The data in an array s-ch as shown in Fig. IV contains all of the
data and as such is referred to as: Dtnm, the total ring array. A
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similar array Is formed from the €oluns of Dt such that the data of the

growth ring Index (percent of normal growth) in the first row of es.h
column is the date of a volcanic eruption of a specified class of erup-
tions paramterized by six* of eruption and the region of the earth con-
taming the volcano. This data array is referred to as the signal array A

and Is denoted by: Dtnq-
A third array is the background array, Db; and is the direct subtrac-

tion of DO fromDt: b" nDt 09D.

Now then, the row averages of each of these arrays were computed.
These constitute average growth curves of the tree for a fourteen-year
period unders normal conditions, conditions coincident with volcanic
activity of the class specified, and under conditions excluding those
concurrent with that specific class of volcanic activity.

A CHI-square comparison was made with the following hypotheses:

1. That the average growth curve of the signal array, D', was India-
tinguishable from the average growth curve of the total array, Dt.

2. That the average growth curve of the signal array, DO, was India-
tinguishable from that of the background array, Db.

3. That the average growth curve of the background array, Db, was
distinguishable from that of the total array, Dt.

4. That the average' growth curve of the total array, Dt, was disting-
uishable from the flat curve of the average of the total chronology.

If all of these hypotheses ark, rejected, then the average growth curve
of that signal array is considered a probable, valid response to a volcanic
eruption of the class specified. Fiom about 300 cases, 35 passed this test
at the 99Z confidence level.

A second test was devised involving the comparison of the first eigen-
vectors of the variance/co-variance matrix of the ring signal array, D9,
computed two ways. The variance/co-variance matrices of the signal array
were computed: (1) using the row averages of the total ring array, dt as
the mean; and (2) using the row averages of the ring signal array,
DO, in the usual fashion. Thus we have:

ConnC (ac) 1 ½ (d8 -dit (dBi - dtj)'

ii j

and

COnn (61) 1 [ (d0eij _ Is) (deij - dX)'
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Then extract the eigenvectors:

Cs (dt) E (-d) E~d & dnn nn anf /-n

and

(S)(d") E E
* cnn nn ) " u

Next, compare E and Ebndw). If they are significantly different, $ Sin( n(-

then the Array DO is unable a an array of tree ring data comprised of sit-
* nificant responses. This was a very stringent test and out of the 35 can-

didates, only six passed.

The computer time required to perform all of these tests, for all ten
* sites and thirty classes of volcanic eruptions, was about ten hours on a

CDC 6500. This did not include the comparison of the eigenvectors, but
only their computation. Thus, the need for a new method.

Another, related, reason for initiating this work is to begin the
development of a statistical description of tree growth which will contain
Information about both the spatial relationships of the tree sites; and,
simultaneously, the temporal behavior of the individual tree sites and the
interrelationship between the two descriptions of the tree growth.

One of the .pproaches to this problem I have started is to devise &n
entropy function for each column of the total array.

H i Pltt lag P1ij

1 - tree site location

± - row

j - column

where P j is computed using the statistics of the chronology.

The intent was to detect a departure from normal growth during the four-
teen year period following any year. The data array, Dt, would then be
collapsed into a one dimensional sequence of entropy values for each tree
sere. These dat.n Streamnr could then be considered as variables indexed
by location and analyzed by multivariate techniques for the time invarient
relationship of the time lagged behavior between each site. Furthermore,
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by computing a conditional entropy, the serial correlation of the trees
could be accounted for.

In this way, it is hoped that those tree sites with large and/or
correlated variance of abnormal behavior will be selected by eigenvectoranalysis.

Another variation of this method would be to form a lagged array from
one of the principal components of a spatial array of tree ring chronol-
ogies sampling an entire region. Then, to perform the entropy calculation
of that lagged array. This would highlight abnormal growth occurring
simultaneously throughout the region.

Now, I would like to hear any comments and suggestions the panel might
wish to sake.
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Figure 1. A sepent of the brislatcone p~'in* ster chronology,
represen~ting three trees from 900 to 840 B.C.
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OUTLIER DETECTION PROCEDURES IN
TRAJECTORY DATA REDUCTION

W il1iam S. Agee and Robert H. Turner
Analysis and Computation Division

National Range Operations Directorate
US Army White Sands Missile Range

White Sands Missile Range, New Mexico

ABSTRACT. Outlier detection procedures are used extensively in tra-
jectory data reduction at White Sands Missile Range (WSMR). There are
three distinct circumstances in which outlier detection procedures are
used in trajectory data reduction. These are recursive filtering,

- weighted least squares batch processing of trajectory measurements, and
unweighted least squares processing. Each of these processes use a
different outlier detection procedure. This paper describes the use of
outlier detection procedures at WSMR, the specific procedures used in the
various data reduction processes, and the limits within which each of the
procedures performs satisfactorily. Of prime concern are the situations
in which the outlier detection procedures fail to detect some obvious
outliers. These undetected outliers destroy automated data reduction
procedures causing a significant number of reruns with human detection
of these outliers. The performance of various outlier detection proced-
ures, those currently used at WSMR'and some others is shown on typical
data Fets for which the procedures fail. It is hoped that, in addition
to obtaining some suggestions on improving outlier detection used in
WSMR data reduction, this presentation will stimulate further investiga-
tion into outlier detection methods by Army researchers.

1. INTRODUCTION. Some outlier detection techniques for batch and
recursive processors which produce trajectory estimates from instrumenta-
tion measurements are described.

Although there are some outlier detectors in the batch processor, a
pre-processor is necessary to eliminate those outliers which could ruin
the batch process beyond recovery. This pre-processor removes the trend
using an unweighted least squares process and detects outliers using two
tests. A better way of removing the tiend is necessary when some types
of outliers are present. Also, since some types of outliers produce a
masking effect which makes sequential procedures insensitive, other tests
are needed. The outlier detectors are good in the batch processur and
very good in the recursive processor.

2. PRE-PROCESSOR

a. Process. Small samples (one to four seconds) of 10 to 50 measure-
ments of eac observation are fit to a second degree polynomif1 in time
using unweighted least squares.
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The observation model is

zi a a0 + alti + a t÷ 2 i + CI n
Z1  0  1i 21 4a 2 1u~

Z aTAz
where t is random noise with zero mean and a2 variance.

Minimizink ct with respect to A we have

•T -1 TA.(TTT) TTZ

* and the set of residuals

Sr Z-TA

b. Outlier Detection. Sample skewness and kurtosis coefficients are
computed'from the residuals

II n

b2  (n-S) rl/(i )2

,If either OS. or b exceed their respective 5% significance level critical

values, the observation corresponding to the largest residual is deleted
and the entire process is repeated with the remaining observations.

We hope that this initial process will detect most of the outliers
automatically with as little human intervention as possible and a mini-
_wu' of false alarms. When there are too many outliers or a few large
ones it is almost impossible to detect them. In these cases, if the
presence of an outlier is detected, the good observations adjacent to the
outliers are the ones rejected.

c. Examples. These two.samples show that the presence of outliers
can sometimes distort a curve fit so much that outliers cannot be detect-
ed. Furthermore, if the presence of outliers were detected, sometimes
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the good observations are rejected while the outliers remain. Bach sample
-has three obvious outliers which were not detocted from the first set of
residuals.

(1) Example 1. Assume some other test could detect the presence of I
outliers -Athatthe observation with the largest residual was rejected.
One of the outliers would be rejected. The two previously described tests
and rejection criteria would now sequentially detebt and reject the two
remaining outliers.

(2) Data for Exmpl 1. i
Ohs Res(1) Res() Res(3) ReS(4)

.21709 -. 33222 -. 29484 -. 20135 -. 00001

.21824 -. 31419 -. 26636 -. 17482 .00001

.95519 .44164 .49745 .58588t

.94511 .45245 .51376

.93499 .46522

.22288 -. 22199 -. 15714 -. 08487 .00001

.22405 -. 19391 -. 13101 -. 06642 -. 00002

.22530 -. 16375 -. 10528 -. 04951 .00002

.22652 -. 13161 -. 08006 -. 03424 .00002

.22770 -. 09751 -. 05535 -. 02063 -. 00004

.22900 -. 06128 -. 03100 -. 00852 .00000

.23028 -. 02307 -. 00715 .00195 .00001

.23155 -. 01714 .01622 .01079 -. 00001

.23286 .05940 .03915 .01805 .00000

.23418 .10367 .06162 .02370 .00001

(3) Example_2. Again assume that some other test could detect the
presence of outliers and that the observation with the largest residual
was rejected. The first point rejected would be the good observation in-

* between the outliers. Two outliers would be the next to go. Further
application would reject good observations and never get the one re-
maining outlier. The outlier detectors previously described don't indi-
cate the presence of outliers in any set of residuals.
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(4) Data for Example 2.

Obs ______ ______s( Rs(

-1.70987 -. 15777 -. 28786 -. 36369 -. 37731
-1.70942 -. 00020 -. 03242 -. 08045 -. 10634
-1.70893 .10548 .14636 -. 12669 .09700

-1.70845 .15923 .24843 .25767 .23267
-1.70793 .16109 .27383 .31254 .30071

-1.70741 .11102 .22252 .29127 .30108
-1.70682 .00910 .09458 .19393 .23385

-1.70626 -. 14478 -. 11009 .02041 .09892
-1.70571 -. 35060 -. 39148 -. 22927 -. 10368
-1.70510 -. 60828 -. 74951 -. 55502 -. 37389
-1.70449 -. 91788 -1.18425 -. 95693 -. 71177

S1.43777 1.86223 1.44596
1.44602 1.45641 .86545 1.16012

-1.70257 -2.15818
1.44667 .47314 -. 54153 -. 17727 .40876

d. Conclusion. More work needs to be done in-

(1) Removing trends in the presence of outliers.

(2) Determining whether the testing and rejection of small subsets
of observations as a one time process is more effective than the sequential
application of testing and rejecting of one observation at a time.

3. BATCH PROCESSOR

a. Process. This is a weighted least squares process which uses
observation variances as weights. It produces all position vector esti-
mates simultaneously. It is a nonlinear process which linearized about
a guess trajectory and is iterated to convergence before editing. The

* neasurement model for the ath observation at the ith time point is

-ia h(xi) * Cia
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where e is random noise with zero mean and a variance.

Solve for ^ by minimizing the weighted sum of squares

m (Zi-ha(Xi1

iml MC i

with respect to xj.

b. Outlier Detection

(1) At each time point i, for each observation a in the solution a
normalized residual is computed

SZia-h (0i)i r a. -C- .

2where a2 r is the estimated residual variance approximated by

a (ri 0 ) oa Ho(HTIHI) HT

H Dh0 (Ci)

axi

T
HTWH HoH-a

acli oia2

If 3<lr. i<S, the respective observation is deleted temporarily.
*IQ

If jrij>S, the respective observation is deleted permanently.

If either of these tests reject any observations the solution is
iterated to convergence with the remaining observations and tested again.
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This test indicates those observations whose rbsiduals are not consistent
with their variance and geometry.

(2) When no more observations are rejected with the previous test, a
sum of weighted residuals for each observation, over #ll the time points
it was processed is computed.

If max IR 1'3, all of the sth observations are deleted from all further

processing, all temporarily deleted observations are enabled and the whole
process is reiterated. This test indicates a consistent bias in an
instrument's set of observations.

4. RECURSIVE PROCESSOR

a. Process. This is an extended Kalman filter which produces state
vector (po-stion, velocity, ar.celeration) estimates sequentially.
Observation variance estimates are also produced sequentially. The pre-
dicted state estimate is

i(k+llk) - F(k)i(k)

the corrected state estimate is

x(k+l) n ;(k+llk) + K(k)r(k+llk)

where K(k) is the Kalman filter optimal gain matrix and

r(k+llk) a Z(k~l) - h(k~l)i(k+llk)-

is the vector of observation residuals.

The variance estimate

2'o l l-w2

i (kl ',= Qi (k.1)

is a steady state function of the exponentially weighted sum of squared
residuals
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2Qi (k÷X) -W[Qi (k) ÷ri (k~l k) 3

b. Outlier Detection. For each observation i at time k.l, a two-
level outlier detection scheme is used on the normalized residual

. . rat+Ilkk +

ao2 ri) -" 2 (k) H .PHl

H hi(x)

i • ox

P is the state covariance matrix.

(1) If r (k~llk)>*12 reject the ith observation for time k~l.

(2) If 4<r(k~l~lk)<12 update Qi(k+l).

* ~2
(3) If O<ri(k+llk)<4 update Qi(k+1), ai(k1l) and x(k~llk).
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APPLYING SIMULATION OF PHYSIOLOGICAL SYSTEMS
TO THE DESIGN OF EXPERIMENTS: EXAMPIES OF
ENDOCRINE AND RESPIRATORY FUNCTION

Stanley M 'inkeistein
Division of Bioengineering and
Department of Operations Research and System Annlysui
Polytechnic Institute of New York
Brooklyn, New York

and

Stanley S. Reisman
Department of Electrical Engineering
New Jersey Institute of Technology
Newark, New Jersey

ABSTRACT. The development of simulations of physiological systems has been
used as a guide in the design of animal experimentation used to study such en-
docrine functions as glucose-insulin interaction and testosterone dynamics.
Models of pulmonary respiratory function have been studied in an effort to
redesign several pulmonary function tests so that particular system parameters
could be evaluated directly from test results.

Model development is thus a useful procedure in studying physiological
systems, for it focuses attention on the cause-effect relationship at each
stage of the homeostatic process, and thus integrates in a systematic way all
that is known about a particular system. In addition, the requirements and
constraints of the model development clearly point out gaps in our knowledge
of overall system function, and in an effort to obtain this missing date one
can utilize the model structure in designing the necessary experimental proto-
cols. The results of these experiments will help complete the model in a
physiological meaningful way, and once complete, the model can be used to study
the effects of parameter variation on system response under both normal and
pathological situations.

The simulation can be used In conjunction with, and as a supplement to,
animal experimentation. For example, the large number of extraneous, and possibly
even unknown, factors which often obscure or invalidate the results of live
animal experiments are not present In the model. The model user must be able
to take advantage of the resulting simplified approach to the physiological
system, but must, at the some time, be careful not to oversimplify the complex
physical interrelationships to the point at which the results are physiologically
meaningless.

This presentation will utilize several case studies to demonstrate the use
of model development in designing experiments to study overall system function,
subsystem operation and compartment analysis, and parameter evaluation.
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1. INTRODUCTION. Model development is a useful procedure in studying physiological

control systems, for it focuses attention on the cause-effect relationship at each
step of the control process, and integrates in a systematic way all that is presently
known abotd the particular system. Models can be presented in many different
modes, some of which might be scaled versions of the actual system, physical analogs
consisting of hardware elements or alternative living systems, and both analog or
digital computer simulations. The emphasis in this presentation, however, will be
on the mathematical descriptions of system function and the computer simulations

Sof these relationships. In particular, the application of models In research,
teaching, and the design of experiments will be discussed in terms of specific
examples of endocrine and respiratory function.

Early application of the control engineer's approach to physiological system
studies appeared in the work of Grodinss and Starkb in their studies of respiratory
function and pupillary motion, respectively (1,2). Orodins' first model of respire-
tory function divided the body Into two compartments, the lungs and the remaining
tissue. In addition, he assumed that control of respiration was purely a function
of carbon dioxide concentration at particular sites within the circulation. Circu-
lation time was also assumed to be negligible. Vnlidation studies were then
performed on the model, at which time model results were compared with khown
experimental results from a living system. Deviations between the model and the
living system suggested several additions to the model, which Grodins incorporated
in subsequent more complex representations. A second model included circulation
time as a non-negligible parameter, and added the effect of alveolar dead space
to the two-compartment study. This more advanced model was able to be used to
study both normal respiratory function and the abnormal behavior associated with
Cheyne-Stokes breathingc. A third model added the brain compartment to the original
structure, and also included the effect of oxygen concentration on respiratory
control. The Grodins models illustrate one approach of model building, which
begins with a simple, but non-trivial, model and adds additional complexity to make
the model results agree with the results of physiological experimentation.

Stark, on the other hand, used the modeling approach in designing his
experimental protocol to study pupillary diameter as a function of light incident
to the eye. He used a qualitative description of the system to develop a block
diagram representing the functional portions of the pupillary control mechanism.
Available data could then be used to describe quantitatively the overall closed
loop system, but it could not be used to develop the mathematical relationships
between the subsystem variables within the closed loop. Stark then designed an
experiment which would produce the necessary Information on open loop response In an
in vivo, physiologically undisturbed human subject. Incident light was focused at
the plane of the iris so that the cross section of light entering the eye was less
than the smallest pupil diameter. Incident light intensity and pupil response were

a. first published in 1954
b. first published in 1959
c. Cheyne-Stokes breathing. periodic increase and decrease in depth of breathing

(tidal volume)
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then recorded with an infrared electro-optical arrangement, from which fr.-quency
response curves could be developed. Transfer functions for the open loop system

were then constructed and a mathematical description of the overall system was thus

determined. Stark thus used a modeling approach to describe the Information flow

through the system, and to see how available data could be used to quantitatively

describe system function. When such descriptions could not be developed, the
structure and suggested cause-effect pathways within the model could be used to aid

In the design of an experiment which would produce the specific Information necessary
for system quantification. Although this procedure was satisfactory in the case
of pupillary dynasics, it is not always possible to satisfy model requirements
within physiological censtraints. However, the modeling approach does, as a minimum,
suggest guidelines for experimental design which would result in the necessary
input-output analytical relationships between system variables.

2. APPLICATION OF MOMI&. Models of physiological systems have been used in research,
Steaching, and the design of experiments. There are two distinct steps involved in

applying the modeling approach to experimental design. In developing the model,
areas where the available data are not adequate to explain the operation of. the

system will become clarified, and a study of the flow of information necessary to

completely implement the model will suggest tests and experimental procedures for

*generation of additional data. Such an example was discussed previously In the

g description of Stark's work. Then, once the model has been developed, it may offer

- a desirable alternative to living system experiments, where preparation time may

be many hours, months, or days, and where surgical or chemical intervention may

cause undesirable side effects. Such experiments can be implemented on the model,
generally with little difficulty and little loss of time. The model can be used

to "zero in" on a best experimental protocol, saving the animal experimentation
for the final stages of exploration. Thus the model does not replace the need for

animel experiments to finally validate methods and conclusions, but simply serves as

a "short cut" to the final procedure, providing an easier, less expensive, and less

time consuming alternative in the overall investigation.

The model can also be used to predict the effect of system changes and system

sensitivities to structural and component changes. Using the model, it i, a rela-

tively simple matter to propose parameter alterations, and to observe the relative

significance of these changes on the operating characteristics of the total system, as
well as the sensitivity of the system to these changes. This is possible even for

variables and parameters which cannot be observed directly in the physiological

environment. This capability has important research and clinical applications, since

it can provide a means for evaluating the probability of existence of various
pathological states and may possibly suggest the etiology of a particular disease.

The physiological model can also serve as an effective adjunct in the training

• of bioengineers and medical scientists. The model can present problems in phyaio-

logical dynamics in terms of cause-and-effect relationships between functioning

"parts of the system and total system operation. For example, it can be used to

study the response of pathological states to various treatments. One important

attribute of such a model is that a "patient" can be constructed with any desired
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pathological condition, and the student can be exposed to this patient in much
the same way as he would explore a clinical case. Thus the student can investigate
many varieties of disease states, propose and validate a host of possible treatment
protocols, and develop conceptual information about pathological dynamics, all in
a single model of the physiological system of interest. At present, however, such
computerized models of physiological system dynamics are not generally available,
but tutorial, inquiry-response and steady-state simulations are available and
finding growing acceptance in the educational community.

3. rEVLOm NT OF aOD&o. The development of a model can be broken down into four
phases. These are block diagram formulation, data collection, mathematical description
of the data, and computer iimulation. The first step to the development of a block
diagram based on the known physical principles of the system operation. This
diagram should display the important characteristics of the system. This diagram
may be too complex for initial simulation since it will probably include secondary
functions which are not critical to overall performance. tn addition, the diagram
may contain physiological variables whose quantitative relationships aom either not
available in the literature or are extremely difficult, if not impossible, to
determine by physiological experimentation. Therefore a revised "simplified" block
diagram must be developed. This is generally a qualitative description of system
behavior, and at this point quantitative relationships must be obtained.

Physiological experiments must now be performed in order to derive dynamic
input-output relationships for each block of the model, unless these data are
already available from prior work. Static characteristics may provide useful
information for modal development, but they cannot provide the information necessary
for a complete description of system behavior. The design of the experiments should
consider the particular subject (e.g., human, dog, rat, etc.), observation times
booed on system response times, quality and availability of data analysis and
processing techniques (e.g., chemical assays), effect of the procedures on altering
system physiology (e.g., surgical and chemical intervention), and overall cost
of the procedure. Thus the block diagram model acts as a guide in designing the
physiological experiments.

In order to use the experimental data, a mathematical description of the
data must be obtained. These may be functions of time when considering system
dynamics. If, for example, the blocks of the model are assumed to represent linear
subsystems or linearized approximations to non-linear operation, the final
mathematical representation for each block will be a transfer function T(s)= Y(es)
where Y(s) and X(s) are the Laplace Transforms of the output and input,
respectively, of the block. The time-domain description of these functions may
be obtained using curve-fitting techniques.

This overall mathematical structure can be simulated on an analog or digital
computer as an aid in exploiting the model. Once a simulation Is developed both
normal and pathological cases can be investigated by changing either potentiometer
settings (analog simulation) or date values (digital simulation). Both analog and
digital computers have advantages and disadvantages in their application. The
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analog computer is the most direct form of simulation since the basic operations
such as integration and multiplication are carried out continuously in either real
time or a directly scaled version of real time. The disadvantages of this form of
simulation are the necessity for amplitude and time scaling, and the complexity of
the wiring or patching which occurs as the order of the system increases. Digital
computer implementation on either large scale machines (e.g., IBM 370) or small
scale minicomputers (e.g., DEC PDP-8) is another route for computer modeling. The
simulation languages available for use on these machines (CSMP, MIDAS, ISL/8) provide
a direct method for simulating an analog computer on the digital computer facility
without the drawbacks of patching wires or time and amplitude scaling. Disadvantages
of large digital computes, simulation are the general unavailability of on-line inter-
active operation of the simulation languages and long turn-around times. Using a
minicomputer can avoid these difficulties, but limited computer availability may be
a problem. However, as costs decrease and machine capability increases minicomputers
are becoming more widely available in biomedical research and education facilities.

4. CASE STUDIES. Three case studies will be presented to demonstrate the use of
model development in designing experiments to study overall system function, sub-
system operation, and parameter evaluation. In particular, the glucove-insulin and
testosterone endocrine systems, and the respiratory system will be discussed.

4A.GLUCOSE-INSULIN HCMEOSTASIS. The development of the glucose-insulin model
demonstrates the use of modeling in the design of experiments in a situation similar
to that of Stark's approach to pupillary dynamics (3,4).. The glucose homeostatic
system consists of a complex interaction between subsystems regulating hormonal
release, glucose storage, and glucose utilization. Each such perfusion region can
be viewed as a combination of controller and plant working together to control
glucose and insulin levels. The pancreas and liver may be considered primary
controllers due to their function under both hypoglycemic and hyperglycemic
conditions, while plant function is represented by peripheral tissue activity.
A block diagram of the primary interacting mechanisms of glucose-insulln control
is presented in Fig. 1.

Although a quantitative description of tqtal system function can ue obtained
from overall input-output measurements (e.g., system plasma responses), a clear
understanding of individual subsystem function and interaction within the intact
closed loop system can only be obtained if each block is itself described quanti-
tively. The modeling approach emphasizes this fundamental observation, and focuscs
one's attention on those experimental procedures which will yield the input-output
data necessary for subsystem development in a dynamic sense. Total system response
data Is wiJely available in the literature. For example, fundamental glucose
tolerance test results can be used to relate system glucose response to glucose
input over the time base of the test. However, the data needed to describe each
physiological block in the figure is not generally available. A study of the model
led to the development of an experimental protocol which satisfied both modeling
requirements and physiological constraints involved in monitoring system variables

; for glucose-insulin control. Simultan~ous input and output plasma concentrations

for glucose and insulin were obtained foi- the liver, pancreas, and periphery over
a fixed time sequence following glucose and insulin stimulus, respectively. These
data were used to derive mathematical functions describing input and output dynamics
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for each block of the closed loop. A set of normoglycemic glucose and insulin
concentration curves in response to a glueose load arte -.i,,.'n in Fig. 2. The
impulse-like glucose load drives the total system into a temporary hyperglycemic
condition, which elicited a pancreatic insulin response. These experimental
results Indicate an overreacting pancreatic insulin output, which is mediated by
hepatic insulin clearance. Glucose levels rose very rapidly throughout the system,
but began to decrease as insulin levels increased. Glucose concentrations returned
to normal resting levels In a decaying oscillatory pattern, as would be expected of
an underdamped higher-order system.

The curves of Fig. 3 and 4 describe arterial and hepatic concentration of
glucose and insulin following insulin loading. The additional parameter of elapsed
time after surgery is also included in these figures. The early post-operative
(2 hours after surgery) response is more sensitive and less stable than the late
post-operative (between 2 and 14 days after surgery) response. Arterial glucose
levels decrease almost 70% from resting levels and return more slowly in the EPO
than the LPO cases. Similarly, hepatic settling time is much greater in the EPO
case. It is also initially highly oscillatory, perhaps indicating a very sensitive,
lightly damped system. Such differences between the EPO and LPO cases suggest a
"possible test for degree of recovery after surgery.

Thus, the modeling procedures have been used as a guide in the design of an
experimental protocol which was used to obtain the data necessary for determining
true in-vivo relationships between subsystem variables. In addition, these sub-
system studies have indicated the possibility of developing additional diagnostic
criteria based on dynamic glucose subsystem response.

4B.TESTOSTERONE DYNAMICS. As another example of modeling of physiologic systems,
the testosterone system Is considered (5,6). Testosterone, the male sex hormone,
gives the male his secondary sexual characteristics such as heir distribution,
skin texture and voice quality. Fig. 5 represents a complete block diagram for
the testosterone control system. Testosterone Is secreted by the gonads and adrenal
cortex and is produced peripherally through conversion of precursors. Hypothalami|s-
pituitary activity provides the primary control of testosterone secretion through
the action of releasing factors and the hormones FSH, LII and ACTHd, In conjunction
with this, testosterone removal mechanisms such as tissue storage and metabolism
determine blood testosterone concentration.

This block diagram contains several effects which can be considered "second
order". These include FSH control, testosterone secretion and the "short feedback"
pathway in which the hypothalamus secretion of releasing factors is controlled by
the blood FSH and LH concentrations. As described earlier, this total qualitative
model is considered too complex for use in the initial modeling effort. A simplified
block diagram, shown in Fig. 6 was developed in which second order effects were
eliminated.

As In the glucose-insulin case, an experimental protocol was developed to
obtain mathematical descriptions of each block of the figure. As an example, to
mathematically describe the testosterone disappearance block, an experiment was

d. FSH: Follicle-stimulating Hormone
LH: Luteinizing Hormone

ACTH: Adrenocorticotrophic Hormone
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designed in which radioactively labelled testosterone was rapidly injected
intravenously into a rat and blood samples were obtained at specific times

following lnjectioi. These blood samples were analyzed for radioactivity and
the resulting data is shown in Fig. 7. Since the experimental procedure limits
all input excitatioos to small perturbations about normal circulatory steady state
levels, the model can be considered to be linear. Thus, the curve of Fig. 7, which
is the "step response" of the testosterone disappearance block, can be used to
generate a transfer function for this subsystem. The analog simulation of this
transfer function is shown in Fig. 8. Similar procedures lead to transfer
functions and simulations for the other blocks of the model.

Once a working simulation is developed, experiments are performed on the
model to validate its performance characteristics and to improve knowledge of
system behavior. This additional information can be used to create a more refined
model. If little quantitative information is available, experiments on the model
may suggest physiological experiments to be performed to obtain such information.
The open loop response of each block of the testosterone model compared favorably
with experimental results. Closed loop tests were then performed on the model.
As an example, consider exciting the model with a step of voltage at the input
of the testosterone disappearance block. This corresponds physiologically to
a rapid intravenous injection of testosterone at times t=O. Responses are observed
at the outputs of the LM disappearance and testosterone disappearance blocks,
corresponding physiologically to the blood Wt and testosterone concentrations,
respectively. The results are shown In Fig. 9, which displays the deviations from
baseline of these curves. As can be seen, the blood testosterone level begins at
the injected level and returns to baseline with some oscillatijil within 24 hours
after injection. The blood LM concentration begins below baseline in order to
compensate for the increased testosterone level. The UII concentration then re-
turns to baseline, again with a slight oscillation, within 24 hours &fter
injection.

These results are as expected using a qualitative knowledge of system behavior,
but there are no quantitative physiological data available with which to check
the results. It Is therefore necessary to perform physiological experiments
to generate such quantitative data.

4C. RESPIRATORY FUNCTION. A digital computer simulation of respiratory function
hub been developed, based on the block diagram representation of Fig. 10 (7,8,9).
This diagram, unlike that of the original Orodin's model, includes all that is
known about respiratory function and control, st least in a q~tnlitative sense.
Once the overall system is developed, e;,ch subsystem must be described individually,
and the appropriate interaction must be included so that the combined subsystems
response to a simulated physiological input such as intrapleural pressure would
closely resemble those of the living system. Just as in the glucose-insulin study,
the overall complex model was initially developed qualitatively, ond then each sub-
system was studied individually and described mathematically. Unlike the glucose
case, an experimental protocol was not necessary, since each block was described
from the basic physics of the system function, and the specific parameter values were
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i~lready available In the literature. Of particular Interest is the interconnection
of the subsystems representing respiratory mechanics, alveolar mixing of respiratory
gases, and diffusion between the alveolar space and the pulmonary capillary bed.

A simplified version of the mechanics section is shown in Fig. 11. This model
includes the trachea-bronchi resistive pathway and the storage compartment of the
lung. Also shown in the figure is the program listing used to represent the mechanics
system dynamics. The program was written in the I11/8° simulation language on a

*MC Pt-8I minicomputer. Typical results of this simulation are shown in Fig. 12.

Amore detailed model of respiratory mechanics has also been developed. It Includes
trachea resistance, non-linear bronchial resi!tances, and non-linear bronchial and
lung compliances. Itn addition, It includes flexible airway (bronchial) tissue
inertance. The effect of airway inertance on overall system function has been
questioned in previous studies, The inertance parameter is not easily measured or
changed in the actual living system, but tt can easily be varied in the computer
simulation. This was done on the detailed mechanics model and the results are shown
in Fig. 13. This figure represetnts air flow into the lung, with inertance values
as a parameter of the study. The curves indicate that inertance variation has no i
effect on the overall flow characteristics of curve shape and timing, but does have
a small effect on maximum and minimum levels of total respiratory flow. Thus the
model has been used as a subject of an experimental procedure when the actual
experiment on a living system was not possible. Of course, the results and conclusions I
of such an experiment can only be as good as the model, and thus the validity of
the model must be determined prior to such experimentation.

The diffusion model can also be used to illustrate an application of modeling
to experiment.,l design,-ad parameter evaluation. Fig. 14 represents the general

model, consisting of a single compartment lung and multicompartment pulmonary
capillary bed. Unlike previous models of pulmonary gas diffusion, however, this
model represents the oxygen-hemoglobin interaction within the pulmonary blood as
a storage (and hence capacitance) phenomenon, and not as a diffusion resistance.
This difference in model concept suggested looking at the standard laboratory test
used to evaluate diffusion capacity (a resistance-like element), and to develop
variations of this standard test to see if the new approach is really a reasonable
one. Variations of breath-holding time in the single-breath test resulted in a

. diffusing capacity parameter which decreased linearly with breath holding time,
when plotted on semi-log paper. This variation in "diffusing capacity" can be
explained using the hemoglobin storage concept developed for this model, but is
not easily explained using the original concept of diffusion resistance. Thus,
a modeling approach could be used to develop improved interpretations of standard
clinical tests. This is yet another application of physiological modeling.

* 5. CONCLUSIONS. This presentation has utilized several case studies to demonstrate
the use of model development in designing experiments to study overall system
function, subsystem operation, and parameter evaluations. In pa'ticular, the
glucose-insulin system, testosterone system, and respiratory system were discussed.

e. ISL/8: an Interactive Simulation Language developed for +he DEC PDP-8
minicompute; by Interactive Minisystema, Inc., Kennewick, Washington 99336.
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A DESIGN FOR THE DETECTION OF SYNERGY IN DRUG MIXTURES

P. V. Piserchia
B. V. Shah

Research Triangle Institute
Post Office Box 12194

Research Triangle Park, North Carolina

ABSTRACT. In Biometrics [September, 1969], P. S. Hevlett gives
a definition of synergy based on the curvature of isobars of drug
mixtures. Specifically, if X(e) and Y(e) represent doses for two drugs
A and B which correspond to an ED(S) response level (i.e., a proportion
0 of all individuals tested will shot the specified response) and if
(AX(e), (1-A)Y(O)) represents a dose of a mixture consisting of a pro-
portion x of X(O) and (l-A) of Y(e), then synergy is absent or present
according to whether the proportion P(X) of individuals responding to
the dose (XX(e), (1-X)Y(8)) equals or exceeds e for various values of
X; that is,

P(X) > 0 for some X implies synergism.

An immediate consequence of this definition which we prove is:

Suppose X0 and YO are two doses (not necessarily equivalent)

of A and B. Consider the straight line connecting X0 and YSand ritten as X Xo, Y= (l-)) YO 0, O • , Then, if0
there exists a X such that -

P(%o 0 P(AoX0o (l-AO) YO) > max(P(X 0oO), P(O,Yo)}

then there exists a nonlir ear isobar and, hence, synergy is
shown to occur.

The import of the above derives from the fact that a test for
synergy in drugs may be performed with as few as three test groups
(those receiving X0 alone, those receiving YO alone and those receiving

(XoXo, (1-AO) YO)) and, perhaps more important, the doses X0 and Y0

need not be equivalent.

1. INTRODUCTION AND DEFINITION OF SYNERGY. In this paper, we
shall consider the effects of two drugs, combined in various mixtures,
on the responses of some biological system or organism. The principal
question of interest is whether the phenomenon of synergism occurs.
Following Bushby [1969], we say synergy between two drugs occurs when,

* acting together, they evoke the same response as when they act sing-
ly, but at lower concentrations, or their effects interact in a fashion
which is to the advantage of the organism by producing an otherwise un-
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attainable rise in biological activity.

Bach of the above concepts is related to the nature of some me-
chanism of joint drug action. A substantial amount of effort has been
devoted to the construction of mathematical and statistical models for
joint drug action (see Plackett and Hewlett [1967) and Ashford and Smith
[19651 for a suitable list of references). However, certain aspects
of this research appear to be controversial and no comprehensive and
overall acceptable model exists. One reason for this is due to the
complex manner in which the effects of drug mixtures are manifested.
To use the terminology of Hewlett and Plackett [19591 and Plaokett and
Hewlett [19671, the joint action of two drugs may be similar or dis-
similar according to whether the primary sites of action for the two
drugs are the same or different. Alternatively, the joint action may
be non-interactive or interactive If one drug has either no influence
or some influence on the biological activity of the other.

These distinctions have given rise to four situations as described
in the following table:

SSimilar Dissimilar
Non-Interactive Simple Similar Independent :

Interactive Complex Similar Dependent

Plackett and Hewlett [19673 further indicate that one criticism of
the above classification is that the "action of two drugs, whether in-
teractive or not, may in some sense be partially similar; similar and
dissimilar actions should be regarded as at opposite ends of continuum
of biological possibilities." Within this context, the concept of syn-
ergism is primarily related to whether the effects of drug mixtures is
non-interactive or interactive regardless of its position along the con-
tinuum from similar to dissimilar. However, part of the controversy
associated with this topic pertains to the equating of no synergism to
only the simple similar situation. Hence, although there do exist a
number of methods for fitting joint action models, an alternative
approach to the concept of synergy which is widely acceptable to most
research workers is required.

As a result, Hewlett [1969] has discussed the measurement of the
potencies of drug mixtures in terms of isobars, a procedure used in
pharmacology. To construct an isobar for two drugs, the doses of the
drugs are measured respectively on actual physical scales (e.g., mg/cc)
along the two axes and hypothetical points representing the dose pairs
producing a fixed biological response are plotted (e.g., 50Z of the in- I
dividuals receiving such a drug mixture dose evoke some specified quantal
response). Of course, in an actual situation these points would have
to be determined experimentally; but, to elucidate the concept we shall

presume that the desired set of points is already known. An example
is shown in the figure below where the fixed points on the two axes
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correspond to the doses for the two drugs separately which lead to a
50X response rate among the tested individuals.

EDEO)

OM a

ED(OO)

Drug A

Figuml . Hypothesizd Isobar for two synergistic drugs.

The curve in the Figure 1 is called an isobar. If it is a straight
line, then one says that the two drugs show "additive action." On the

- ' other hand, if it falls below the straight line connecting the two
fixed points, then one says that synergism (or potentiation) occurs.
This definition tends to bypass the question of similarity or dissimilarity
of the joint drug action but yet is consistent with lower concentrations
evoking the same response which Bushby [1969] uses in describing synergy.

I Hence, throughout the remainder of this paper, synergy will be viewed
as curvative of isobars, giving rise to the following formal definition
of synergy.

Let P(X,Y) denote the proportion of individuals respondinb to a
mixture of drugs A and B, where X - X units of A and Y - Y units of B.

Assume that P(X,Y) obeys the following:
(a) 0 - P(X,Y) 5 1 for X k 0, Y a 0,
(b) P(X,O) and P(O,Y) are continuous and monotonically

* nondecreasing functions of X and Y, respectively.

If for a specific 0 there exists an X or Y such that P(X,O) -

or P(O,¥) -e, denote X as X(8) and Y as Y(e).

Now, suppose there exists a combination of A and B denoted as
S • (X*,Y*) with P(X*,Y*) - 8* (say), then the combination (X*,Y*) is

* • said to be synergistic if one of the following conditions holds:
• Condition 1: If neither X(8*) nor Y(8*) exist then (X*,Y*) is syn-

* ergistic if 8* > P(X,O) for all X and e* > P(O,Y) for all Y.
\ Condition 2: If either X(e*) or Y(O*), but not both, exist then (X*,Y*)

is synergistic if X* < X(8*) and 8* > P(O,Y) for all Y, or, Y* < Y(B*) and
e* > P(X,0) for all X.
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Condition 3: If X(6*) and Y(e*) both exist then (X¥,Y*) is synergistic
if

+( X* Y*

Briefly, condition (1) maintains that (X*,Y*) is synergistic if
an otherwise unattainable rise in biological activity in achieved
[Bushby, 19693. Conditions (2), (3) are, formally, Hewlett's [19693
conditions for synergy.

2. IMPLICATIONS OF THE DEFINITION. An immediate consequence of

the above definition is the following theorem and proof.

Theorem: Suppose X0 and Y0 are two doses (not necessarily equiva-

lent) of drugs A and B. Consider the straight line Joining (X0 ,0) and

(O,YO) and written as X - XX0 , Y * (1-A)YO, 0 X S 1. Then, if there

exists a X such that:

0 0 P(oXo, (1-x0 o)y0  > max({PXoO). P(OYo)},

then (AoXo, (1-A )Yy) is a synergistic combination of A and B.

Proof:
Case 1: Suppose neither X(e 0 ) nor Y(80 ) exist. Then, by the continuity

assumption, a0 > P(X,O) for all X, and, 60 > P(0,Y) for all Y.

Hence, (XoX 0 , (1-X 0 )¥ 0 ) is synergistic by Condition 1.

Case 2: Without loss of generality assume X(e0 ) exists and ¥(e 0) does

not. Then again, by the continuity assumption,

a0 > P(O,Y) for all Y.

Also, P(X(e 0 ), 0) - 0 > P(X 0 ,O), by assumption, and, through mono-

! tinicity, X(eO X0.

Therefore, X(0 0 ) X 0 > X0X0 and (AoX 0 , (l-0o)Y0) is synergistic by

Condition 2.
Case 3: If X(M0 ) and Y(e0 ) both exist then, 80 - P(X(0), 0) > P(X0 10)

T and, 60 . P(0,Y(e0)) > P(0,YO)

Hence, by the monotnicity assumption we have:

MeO0 > X0 and yveO > YO.

STherefore,

XoX(0 > oXo and (1-XO)Y(eO) > (1-AO)¥O,
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"and,

•0>X(8-O and 1-X0 > yeo

Therefore,

4XoX (1-A o)y0.:

Teo) +X--(O +0 ~ ) •1, ;

and (•AXo, (1-k 0 )YO) ii synergistic by Condition 3.

Graphically, the above theorem is represented in Figures 2 and 3.

S(Xo,O) E

•'Figure 2. of s oba synergistic response. P (X,Y).

it

I IS 'VI

P M

II 0 X0

Figure 3. Synergistic response as a function of X, (Xo,YO) fixed.
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Notice the above does not require X0 and Y to be equivalent doses;

however, it does require that max P(X) be greater than both and points.

It is not sufficient to show P(A) > AP(l) + (1-A) P(O). An example should
suffice.

Consider the response defined by

P(X,Y) - log (X+i+l) for X + Y 5 e - 1,

a 1 for X+Y > e - 1,

then, the isobars of Pý4,Y) are the lines X + Y - const. Clearly,
straight line isobars c!id by definition an additive mixture. However,
consider the response along any line of the form X a AX0, Y * (1-A) Y0

where X0 > Y0 " We have,

PM) - P(XXo, (1-X) YO) - log(AX0 + (1-A) YO + 1)

"- log(A(X 0-Y ) + Yo + 1).

Certainly, P(A) > XP(l) + (l-X) P(O) for every 0 < A < 1, but yet,
by definition, the mixtures are additive.

Figure 4 gives the geometry of the situation.

3. OPTIHAL MIXING. Associated with but not equivalent to synergy

is the concept of the optimal mixing of two drugs.

P(O)

P(O P(A ) + (I(- X P(O)

Figure 4, A non-linear ,dditive drug mixture.
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We say two drugs have an optimal mixing rate if there Is a ridge -

Ir, the response, P(XY), in a straight ling direction. If the projection

of the ridge onto the (X,Y) plane is a line Y - pX then we say X and Y

have an optimal mixing rate p n Y/X.

The concept of optimal mixing is useful in establishing synergy.

Suppose an optimal mixing rate exists. Then, if X and YO are any two

does of X and Y, we have max P(X) - max P(AXO, (1-A) Yo) occurs at the

intersection of the two lines;

(1) X- XXO, Y - (1-X) YO'

(2) Y - PX.

Solving for X, we obtain

X -Y / (P + Yo)•

or equivalently,

x XY/(pX0 + Y 0 ),

Y - pXoY0 /(PXo + Yo).

It is to be noticed that optimal mixing is defined in terms of the
parameter p and not in terms of A. We mention this so as to avoid con-

fusion in picking combinations of doses which are not on the line of
optimal mixing. For instance, suppose optimal mixing occurs in a 1:1

ratio. Then, p - 1 and the jine of optimal mixing is Y - pX - X.

Now, suppose we choose doses X0, YO where X0 > Y Then in Figure 5,
we have

Y~x
S1~~oYo) "

(Xo,O)

Figure 5. Representation of a three point design.
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The maximum of P(X,Y) along X - AXO, Y - (1-A) Yo occurs at the

intersection of X - AXO, Y w (1-A) YO and Y - X. It does notoccur

when A - 1/2. Keeping this in mind, selection of combination doses
becomes a more rational procedure.

4. DESIGN AND ANALYSIS. Having defined synergy, we now proceed
to give certain methods useful in showing synergism if it exists.

The simplest design is the three point design. For a three point

design, one chooses doses X0 of A and Y0 of B and a combinationI (X�O, (1-A) Yo) of A and B. Synergism is then said to exist if one can

show

P(A) - P(AXO, (1-0) Yo) > max{P(XoO), (OYo)}

We propose to do this by testing:

H H0 : P(A) !5 max(P(X0,0), P(0,Y0 ))

against the alternative:

H1 : P(.) > max(P(XoOI), P(O,Yo)).

The test statistics used will be the simple large sample normal
test for differences between two binomial proportions. However, the
critical region used will be of the form:

* P(A) -P(X 0,O)
Pr - > l• x

________~x P(Xo,O) q•(Xo,0)
N + NX

Ax
SPr .P(X) - P(0Y 0 ) 2>:

P(M) Q(A) I(0,Yo) Q(o,Yo)

N, N Y

where P(X 0 ,O), P(0,Y 0 ) and P(X) are the observed proportions of indiv-

* iduals responding at doses X and Yo and combination (XXo, (1-0) YO),

respectively, with Q(Xo,O), Q(O,YO) and Q(X) being the respective pro-

portions not responding. Letting a2 .05 we obtain Z - Z * 760.
1-az 78

Letting - .01, we have Z Z 90 1.285.

330

* I I I II I II "



Notice that In the above, no assumption is made about the equivalence
of and YO" This is not assumed because it is not necessary to choose

equivalent doses to establish synergy. Also, no assumption is made about
A. Again this is done because no assumption concerning A (other than
0 ! X 9 1) is necessary. However, Intuitively, the efficiency of the
test procedure should be greatest when ?(A) Is maximum, Thereiore A should
be chosen such that the combination lies on the intersection of the line
connecting X0 and Y and the line of optimal mixing as given In section

3 of this paper.

The Tables I-IV present minimum sample sizes needed to detect sy-
nergy for various values of PX -P(X,O) - P(O,Y) - P and P(M) - P A P X

The four tables give required sample sizes for significance levels .05
and .01 and power .80 and .90.

If we define Zl1- and Z _- as the (1-a)-th and (1-0)-th percentage

points of the normal (0,1) distribution respectively and if wv' let

or- VP,(l-P) and aA - A(1-PA) then the formula for deteruining N,

the total sample sie, is given by:

02- a 0x + Oa) (Z + Z 1 .)21(p - pX)2,

S2 2

where a is the significance level of the test and (1-0)2 is the power
of the test.

To determine N, NY and NA for a given N allocation is carried out
by;

NX N- N/(62 c + a•)
AA ~ X X

and

Ny N (N - NA)

Integer values for N, NX, Ny and NA were determined by rounding off

the values determined by the formulas so that Nx + Ny + NA - N.

5. SUMKARY. Beginning with an intuitively appealing defintition of
synergy given by Hewlett [1969], we have attempted in this paper some
exploration of the implications of this definition, tried to dispel cer-
tain naive notions concerning the analytic characterization of synergy
and concerning the optimal mixing of drugs. Too, we have suggested a
testing procedure to determine the existence of synergy and have given
sample sixes required to detect it.

The techniques discussed in this paper are illustrated in the follow-
ing example.
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Suppose we wish to detect synergy in a mixture of drugs A and B.
Further suppose we know I unit of A is approximately equivalent to 3
units of B and that A and B have an optimal mixing rate of 1 part A to
2 parts B, Now, denoting A as X and B as Y we have XO0 1.0 Y1 0 - 3.0

and Y - pX - 2X. To derive the best combination of A and B we find

X - Xo0 o/(p1o + YO - .60 units of A,

and

Y - PI 0 Y0 /(PX 0 + YO) - 1.20 units of B.

Now, suppose X0 I and Y0 - 3 are approximately ED(.50)'s of A

and B and it is suspected that the combination (.60. 1.20) gives an

expected cure rate of .70. Then, for an a- 05 level test with power
.80 we find N - 144 vhen P " PY " .50 and P. - .70. We find N-, NY
and NX by the following:

-X NoAl/(2 a + a

-(.1.44) (AP(1-7)(-.3T))(r2 x V(.5q)(.5) + /r.=7)(3)

, 56.62.

11 1
Ny - NX - i(N - N -? n -(144 - 56.62)

j - 43.68.

Hence, we take 56 experimental units for the combination (.60, 1.20)
and 44 each for the individual applications of A (1 unit) and B (3 units).
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Minimum Sample Size for Detecting Synergy

Table I

Significance Level .05 Power .80

p .4 .5 .6 .7 .8 .9

.3 544 139 62 34 20 12

.4 0 596 147 63 32 17 I

.5 0 0 600 144 59 28

.6 0 0 0 555 126 46

E 7 0 0 0 0 462 96

.8 0 0 0 0 0 315

Table II

Significance Level .05 Power .90

P .4 .5 .6 .7 .8 .9

.3 751 192 84 45 26 15

.4 0 823 204 86 44 23

.5 0 0 830 198 81 37

.6 0 0 0 768 174 66

.7 0 0 0 0 637 132

.8 0 0 0 0 0 435
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Minimu Sample Size for Detecting Synergy

Table III

Significance Level .01 Power .80

S.4 .5 .6 .7 .8 .9

.3 857 219 97 51 30 18

.4 0 940 232 99 51 28

0 0 948 227 91 43

.6 0 0 0 877 199 74

.7 0 0 0 0 727 149

.8 0 0 0 0 0 496

Table IV

Significance Level .01 Power .90

.4 .5 .6 .7 .8 .9

x Y

.3 1113 284 126 68 39 23

.4 0 1223 301 129 66 35

.5 0 0 1232 293 119 57

.6 0 0 0 1139 258 95

.7 0 0 0 0 944 194

.8 0 0 0 0 0 645
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ME 89QUNITIAL DESIGNS FOR BINCNIAL CLINICAL TRZALS

L. Arkles
and

R. Sriniviasan
Temple University, Philadelphia

ABSTRACT. The problem of selecting the best out of several treat-
sents wit chotomous responses is considered in the framework of the
Bechhofer sequential selection model with emphasis on minimizing the
number of patients assigned to the inferior tremtments. Adaptive ssapling
rules are proposed for the situations where the response to the treatments
is delayed or where several patients have to be scheduled at each stage.
Protocols which employ the new sampling rules with various termination
rules considered in the literature are shown to be superior or comparable
to those which employ the familiar Vector-at-a-Time or Play-the-Winner
sampling rule in terms of the average sample number and the inferior
treatment number.

1. IMNooUO. AND DEFINITION OF S ,LING RES. Lot I2
be k (k • 2) binomial populations with respective unknown probabilities of
success p1DP2II..."Pk where P1 - Pi for i a 2,3#... k. The problem of
identifying the population with the largest probability of success, the
'best' population, has been extensively studied in the literature. In
this paper we are mainly concerned with the sequential selection model
for this problem as formulated by Bechhofer (1958) and Bechhofer, Kiefer
and Sobel (1968), and adopted by Sobel and Weiss (1970) to the problem of
clinical trials where several treatments with dichotomous responses are
being compared.

The Bechhofer model assmoes sequential sampling, and consists of a
sampling rule which specifies the population to be sampled at any given
stage and a termination rule which directs when to stop sampling and how to
make the final choice of the best population. The selection is to be made
subject to the P*,A* -adissibilit requirement on the probability of
correct selection (CS) that

F(CS) ' P* for pl-ax{P2 ,P3,...,pk > A* (1)

where P* C P* < 1) and A* (0 A h*< 1) are prespecified constants.

Pmceilg page Wlank
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In the context of clinical trials the Bechhofer model provides
admissible protocols which assign patients to the treatments sequentially
in time, one or more at each stage, until the best treatment is idonti-
tied with a specified probability. A* can be interpreted as the medi-
cally significant or detectible difference. For specified P* and A*,
choice among the various possible admissible protocols is usually made
on the basis of the (random) number Ni of patients assigned to treatment

i (i = 1,2,...,k) and the total number N of patients needed to reach a
decision. More specifically, Sobel and Weiss (1970, 1972) base their
comparisons on the loss functions

k k
E(N)- I E(Ni), I E(Ni) (2)

i-1 i-2

and the risk

Ic
S *.. • pl-Pi)E(Ni)

the last two measures being given more importance for obvious ethical
reasons.

It is convenient at this point to specialize our discussion to the
case when k = 2; a major portion of this paper as well as most of the past
work in this area is confined to the comparison of two treatments. The
admissibility condition (1) now reads

P(CS) _ P* for A = pl-P 2 _ A*, (3)

and the loss functions of interest, given in (2), become E(N), known as the
Average Sample Number (ASN), and E(N 2 ), the Inferior Treatment Number (ITN).

Most of the protocols considered so far in the literature fall into
two broad classes depending on the sampling rule employed. The older and
more familiar sampling rule is the so-called Vector-at-a-Time (VT) rule
which assigns patients to both of the two treatments at each stage, one to
each treatment randomly, until a selection is made based on the termination
rule. An essentially equivalent way of implementing the VT rule is to
assign the first patient to one of the two treatments at random and then to
alternate the treatments given to the subsequent patients as they arrive.
It is readily seen that in any protocol which employs the VT rule, regard-
less of the termination rule used, we have E(NI) = E(N 2 ) = E(N)/2.

Since one of the basic aims of a clinical trial is to reduce the ITN
it was suggested by Zelen (1969) that sampling be done according to the so-
called Play-the-Winner (PW) rule instead of the VT rule. The PW rule was



originally studied by Robbins (1956) as a data-dependent policy for the
two-armed bandit problem. According to this rule the first patient to
arrive is given one of the two treatments chosen at random. The ith
patient (i = 2,3,.....) is given treatment I (treatmnit 2) if the (C-Tl)th
patient received treatment I (trtatent 2) and it succeeded or if the
(i-l)th patient r-ceived treatment 2 (treatment 1) and it resulted in a
failure. Zelen investigated the performance of the P1 sampling rule in
the Anscombe-Colton model (Anscombe, 1963; Colton, 1963) for clinical
trials and showed that in general it leds to a significant reduction in
the number of patients who receive the tnferior treatment.

Subsequently Sobel and Weiss (1970) and several others (See Hoe1,
Sobel and Weiss, 1975 for an excellent ,eview) have shown that the P1 rule
is superior to the VT rule in the Bechhofer model in terms of reducing
both the ASN and ITN for fixed F* and A*. Most of the emphasis here has
been on devising different termination rules and comparing the resulting
protocols with the already existing ones.

Despite its poor performance in terms of the ASN and the ITN, the VT
sampling rule has some advantages in its implementation which are not
shared by the PW rule. For example, in the PW rule, the allocation of any
given patient to a treatment depends on the outcome of the preceding trial,
and hence it is required that the response to the treatments be instanta-
neous or that the response be available by the time a new patient arrives;
the VT rule, on the other hand, is applicable in situations of delayed
response, and allows for the treatment of several patients at each stage.

One of the purposes of the present paper is to propose and study
some sampling rules which are applicable in situations of delayed response.
The siNplest case here is when patients arrive twice as fast as the
response to any one of the two treatments is made available. This is
considered in Section 2. The Play-the-Clear-Winner QCW) sampling rule
introduced to handle this case is defined as follows: At the first stage,
the first two patients to arrive receive treatments 1 and 2 respectively.
At any given stage assignment of treatments is made either for two
patients or for one patient depending on the outcome of the preceding
stage. At the ith stage (i = 2,3,...) treatments 1 and 2 are assigned
randomly to two patients if, at the (i-l)th stage, either (a) treatments 1
and 2 were assigned to two patients and they both resulted in a su:cess
or a failure or (b) treatment 1 or 2 was assigned to one patient and it
resulted in a failure. At the ith stage (i = 2,3,...) treatment 1 (2)
is assigned to one patient if, at-the (i-l)th stage, either (a) treatments
1 and 2 were assigned to two patients and treatment 1 (2) resulted in a
success and treatment 2 (1) resulted in a failure, or (b) treatment 1 (2)
was assigned to one patient and it resulted in a success.

It can be easily verified that the PCW sampling rule is equivalent to
the following rule: the first tuo patients to arrive receive treatments 1
and 2 randomly. The ith patient (i = 3,4,...) to arrive is given treatment
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1 (2) if the (i-2)th patient either (a)received treatment 1 (2) and it
resulted in a success or (b) received treatment 2 (1) and it resulted in
a failure. This formulation implies that the PCW rule is equivalent to
implementing two PW rules in parallel, one starting with treatment 1 and
the other with treatment 2, a possible solution to the delayed response
case suggested by Zelen (1969). This formulation also shows that the
PCX rule is applicable in situations where the response to the treatments
is instantaneous but two patients are to be scheduled to receive treat-
ments at each stage.

The performance of protocols which employ the PCW sampling rule and
various termination rules considered in the literature in connection with
the P1Y rule is sumarized in Section 2. Comparisons with the corres-
ponding protocols which use the P1 and the VT sampling rules are also
presented. It is shown that the PCW rule is in general superior to the
other two rules in the sense that it requires comparable or smaller ASN
and ITN to reach a decision in addition to its greater generality over
the PW rule. Numerical results on the comparisons are presented only for
P* a 0.9S and A* = 0.2.

The formulation of the PCW rule as two PK rules in parallel allows
us to extend it to situations where a patients are to be scheduled at
each stage or patients arrive a times as fast as the response to any one
of the two treatments is made available. This is accomplished by simply
implementing m PW rules in parallelIm/2J starting with one of the two
treatments chosen at random and the remaining starting with the other
treatment. This method of dealing with the delayed-response situations
was again essentially suggested by Zelen (1969). Section 3 deals with
this rule (denoted PWP for Play-the-Winner-in-Parallel) for a - 3. In
contrast to Section 2 only a very limited number of termination rules are
considered here. Comparisons in terns of ASN and ITN indicate that the
behavior of the PWP rule is similar to that of the P01 rule discussed in
Section 2.

In Section 4 we return to the problem of selecting the best out of
k (k > 3) binomial populations. The generalization of the VT sampling rule
to three or more populations is straightforward. All of the k populations
are sampled at each stage. Equivalently, the populations are randomly
ordered at the outset and are sampled, one at each stage according to this
order, sampling returning to the first population at the end cf a cycle.
A generalization of the PW rule, called the Play-the-Winner-Cyclical (PW)
sampling rule, appropriate for the present case was studied by Sobel and
Weiss (1972). According to the PWC rule, the k populations are randomly
ordered at the outset. Sampling starts with the first population. At the
ith stage (i = 2,3,...) the tth population (t = 1,2,...,k) is sampled if,
at the (i-l)th stage, either (a) the tth population was sampled and it
resulted in a success or (b) the (•-l)-h population (0th population being
identified with the kth was sampled and it resulted in a failure. Admissi-
ble protocols involving the VT and the PWC sampling rules and the so-called
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inverse stopping rule were compared by Sobel and Weiss (1972) using the
loss functions defined earlier in this section. They showed that the PWC
rule was uniformly better than the VT rule for this stopping rule. Except
for their work nothing is at present known about the behavior of the VT
or the PWC sampling rule for other termination rules.

A natural generalization of the PCW rule to k populations is as
follows: Sample all k populations at the first stage. At the ith stage
(i = 2,3,...) sample only those populations which were sas.;,l~d at the
(i-l)th stage and resulted in a success. If no such population exists at
the ith stage, then sample all the k populations again and continue the
process. We shall refer to this sampling rule also as the PCW rule, and
note that it is also applicable in situations where patients arrive twice
as fast as the response to the treatments becomes available. In Section 4
we present some numerical results for the PCW rule for k = 3 with the
inverse termination rule and some of its modifications applicable only to
the VT and the PCW rules. It is shown that with inverse termination the
PCI and the PWC rules behave more or less identically while the modified
rules lead to improved protocols when employed with the VT or the PCW rules.

Throughout this paper numerical comparisons of the protocols are given
only for P* = 0.95, A* = 0.2 and a limited number of values of the para-
meters pl'P2, Pk- More extensive comparisons as well as the analytical

results pertaining to the protocols will be presented elsewhere.

2. THE PCW SAMPLING RULE FOR TWO BINOMIAL POPULATIONS. In this
section we consider several termination rules proposed in the literature in
connection with the PM sampling rule. The values of ASN and ITN are pre-
sented for admissible protocols (P* = 0.95, A* = 0.2) which employ these
termination rules and the VT, PW and PCW sampling rules for A = (pl-P29/2
=0.2 and p0 = (P l +P2)/2 = 0(0.1)0.9. The sample sizes correspon-

ding to other values of these parameters are available but are not given
here since the comparisons presented here reflect the general performance
of the protocols quite adequately. Protocols are identified throughout by
the sampling rule and the termination rule employed. For example, PCW3
refers to the protocol which uses the PCW sampling rule and Termination
Rule 3. Symbols such as P(CSIPCW3), E(N,1VT4) and E(NIPWI) have their
obvious meanings. For i = 1,2, the cumufative number of successes and
failures on Hif, at any given stage will be denoted by Si and Fi respectively.

Termination Rule 1 (Sobel and Weiss, 1970). Sampling stops as soon as
SSl-S2I = r, where r is chosen so as to make the resulting protocol admissi-
ble. The population with the larger number of successes is chosen as the
better; in case S = $2, the better population is chosen at random.

For given P* and A*, the minimum values or r which make the protocols
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VTI and PWl admissible have been determined by Sobel and Weiss (1970).
This can be done for PCWl using a similar method. For P* n 0.9S and
A* a 0.2, these are given by r a 4 for VT1, r - 10 for PUl and r a 8 for
PC . Exact expressions for the ASN and ITN of VTl and PWI are also
given by Sobel and Weiss (1970). Similar expressions can be obtained for
PCWl.

Tsomination Rule 2 (Sobel and Weiss, 1971). Sampling stops as soon
as either r1 o 2 (or both) equals r where r is preassigned to iake the

protocols admissible. The population which achieves r successes first is
declared the better. If both achieve r successes simultaneously, then the
better population is selected at random.

It can be shown that, for all pl" P21 P(CSJVT2) - P(CSIPW2) -

P(CSIPCW2). Hence the same value of r would make all these three protocols
admissible; r equals 20 for P* - 0.95 and A* w 0.2. Sobel and Weiss (1971)
have shown that E(NIPW2) ! E(NIVT2) and E(N2 IPW2) ! E(N2 JVT2) uniformly in

P, and P2. These inequalities can be shown to hold with PW2 replaced by

PCW2.

The following termination rule is a modification of Termination Rule 2,
and is applicable to the PCW and the VT sampling rules but not to the PW
rule. It is defined in terms of the cumulative number of 'clear successes',
S on Hi (i . 1,2), defined by Sc a Si - (the number of times 9, and

were sampled together and they both succeeded).

Termination Rule 3. Sampling stops as soon as either S1 or S2 (or

both) equal r. The population with the larger total number of successes is
chosen as the better. If S1 S2 then the better population is chosen at
random.

For P* a 0.95 and A* a 0.2, the r value which makes the protocol
admissible equals 12 for PCW3 and 9 for VT3.

The next termination rule, originally studied by Hoel (1972) for the
PW sampling rule, is based on the statistics R1 M S1 + F2 and R2 M S2 + F1 .

Termination Rule 4. Sampling stops as soon as either R or R2 reaches

a preassigned value r, and the population fli is selected as the better if

Ri reaches r first for i - 1,2. With the PCW and the VT sampling rules,

r + 1 may be reached before stopping. If both R1 and R2 reach simultaneous-

ly, as is possible with the PCW and the VT rules, the better population is
selected at random.
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It can be shown that PCCSIPCW4) * P(CSjPW4j. Hence,.as in the case of
Termination Rule 2, the same value of r would make both of these protocols
admissible. For P* a 0.95 and A* w 0.2, the minimu. value of r equals
33 for PCW4 and PW4, and 29 for VT4.

Termination Rule 5 (Pushimi, 1973). Sampling stops as soon as either
1-is2-r or F' +I * a. The population with the larger number of
suQcesses is cholen aJ the better, and In case S1  82, the better popula-
tion is chosen at random.

For any given P* and A* there are in general several values of the
pair (r,s) which would make the protocols VTS, PWS and PCW5 admissible.
Fushimi (1973) shows how the 'best' pair can be obtained for PWS using the
property that, as s tends to a, the present termii.ation rule reduces to
Termination Rule 1 and, as r tends to -, it reduces to Termination Rule 2.
The 'best' choice of (r,s) corresponding to PCWS can also be determined
along the same lines.

Termination Rule 6 (Nordbrock, 1975). Sampling stops as soon as eithers Si

Is 1 r or wp1 - p21 > - here p - ; the population
(P +F2) (Si÷Fi)

with the larger number of successes is chosen as the better, and in case
S* S2 1 the better population is chosen at random.

The remarks made in connection with Termination Rule S regarding the
choice of (r,s) apply here as well. (ras) equals (8,4.2) for PCW6, (11,4.2)
for PW6 and (4,3.8) for VT6 when P* - 0.95 and A* = 0.2.
forTable 1 summarizes our results on the ASN and the ITN of the protocols

introduced above for P* w 0.95, A* & A a 0.2 and p0 - 0.1(0.1)0.9. As
0 mentioned earlier, the overall behavior of the protocols is adequately
f! reflected by the results of this table. It can be seen that, except for a
v few exceptions (for example, for values of p0 very close to 1), the PCW rule

requires comparable or smaller sample sizes when compared to the VT or the
PW rule. The increased generality of the VT sampling rule over the PCW rule,
and that of the latter over the PW rule should also be kept in mind when
comparing these protocols.i 3. THE PWP SAMPLING RULE FOR TWO BINOMIAL POPULATIONS. The PWP

samplingrle-Ts consideriWeir---for- i-r-uTination Rules 2 and 5 of the previ-
ous section. For P* a 0.95 and A* a 0.2, r n 20 for PWP2, and (r,s) w (8,41)
for PWP5. Table 2 gives the sample sizes for these two protocols corres-
ponding to the same values of the parameters as in Table 1. It can be seen
that the behavior of the PWP sampling rule is quite similar to that of the
PCW rule.
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4. TIM1 PCW SAMPLING RULE FOR THREE BINOMIAL POPULATIONS. Th. PCW
sampling rule for three binomial populations is considered here with
Termination Rule 2 defined in Section 2, and two of its modifications
applicable only to the PCW and the VT sampling rules. The protocol
PVC2 has been studied by Sobel and Weiss (1972). Closed form expressions
for P(CSIPCW2) and H(Nii PCW2), i a 1,2,3, can be obtained using the method
of Sobel and Weiss (1972). Numerical results on the probabilities of
correct selection for various values of the parameters indicate that, as
In the case of two populations, PCCSIPCW2) = P(CSIPWC2) even though wehave not been able to establish this. For P* - 0.95 and A'* -0.2, the
Comom value of r which makes the protocol. PCW2 and PWC2 admissible is 28.

The modifications of Termination Rule 2 which we consider are quite
similar to Termination Rule of Section 2 in that they are obtained by
defining 'clear successes' appropriately. In the first modificatiou,
Termination Rule 3', we define T1  (number of times all three populations
were sampled and either n and 11 or 11 and 11 succeeded and the other1 2 1 3
failed) + (number of times nil and n2or R1 and n3 were sampled and H
succeeded and the other failed) + 2(number of times all three populations
were sampled and HI alone succeeded), and T andTsymtial. er-1 2 T3 symtial.Tr-
nation Rule 3' is then obtained from Termination Rule 2 by simply replacing
S b Ti for I a 1,2,3.. Similarly, Termination Rule 3"1 is obtained from

Mi
Termination Rule 2 by replacing S~ by U~ for i - 1,2,3, where U1 w (number
of times all three populations were sampled and either Rl and 11 or H1

1 2 1
and 113 succeeded and the other failed) + (number of times Riand 112 or ,
and It were sampled and they both succeeded) + 2[(number of times all
three populations were sampled and n l alone succeeded) + (number of times

iland 112 or 91and 11, were sampled and fl1 alone succeeded) + (number of
times H1 alone was sampled and it succeeded)], and U 2and U 3are analagous-
ly defined. The T valuos which make the Termination Rules 3' and 3"'
admissible for P* - 0.95 and A* - 0.2 are respectively 24 and 37.

Table 3 summarizes the expected sample sizes for the protocols of this
section for selected values of the parameters. As in the case of Tables
1 and 2, more extensive comparisons are available but are not presented.
It is clear from Table 3 that PCW3' is to be preferred over the others.
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TABLE 1. EXPECTED SAMPLE SIZES FOR E PROTOCOLS OF SECTION 2

FOR P* 0.95 AND A A* - 0.2.

PO E(N 2 ) B(N)

PCW1 PW1 VT1 -PCW PW1 VT1

0.1 33.0 40.5 20.0 73.0 91.0 40.0
0.2 29.5 35.7 19.8 66.0 81.5 39.6
0.3 25.8 30.9 19.2 58.7 71.9 38.5
0.4 22.0 26.0 18.7 50.8 61.9 37.4
0.5 18.0 20.9 18.2 42.7 51.5 37.0
0.6 14.3 15.8 18.7 35.0 41.2 37.4
0.7 10.9 11.0 19.2 28.0 31.2 38.5
0.8 7.8 6.5 19.8 21.9 22.0 39.6

S0.9 5.0 2.2 20.0 17.0 13.4 40.0

PCW2 PW2 VT2 PCW2 PW2 VT2

0.1 81.0 80.5 100.0 181.0 180.5 200.0
0.2 S2.9 52.4 66.7 119.5 119.1 133.4
0.3 38.6 38.1 50.0 88.5 88.0 100.0
0.4 29.6 29.1 39.9 69.4 69.0 79.8
0.5 23.3 22.8 33.2 56.4 55.9 66.4
0.6 18.4 17.8 28.4 46.6 46.0 56.8
0.7 14.1 13.4 24.9 38.8 38.1 49.8
0.8 9.9 8.8 22.2 31.8 30.7 44.4
0.9 5.0 2.5 20.0 24.9 22.4 40.0

PCW3 VT3 PCW3 VT3

0.1 49.0 45.0 109.0 90.0
0.2 34.7 33.0 77.9 66.6
0.3 27.2 28.0 61.8 56.0
0.4 22.2 25.4 51.5 50.8
"0.S 18.5 24.7 44.1 49.4
0.6 15.4 25.4 38.2 50.8
0.11 12.5 28.0 32.9 56.0
0.. j.3 33.0 27.6 66.6
0.9 5.0 45.0 21.0 90.0
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TABLE 1. (Continued)

p 0  HCN 2  E(N)

PCW4 PW4 VT4 PCW4 PW4 VT4

0.1 26.6 26.5 24.3 59.4 S9.0 48.6
0.2 25.9 25.8 24.3 58.6 58.3 48.6
0.3 25.1 24.9 24.3 57.7 57.3 48.6
0.4 24.0 23.8 24.2 56.5 56.2 48.4
0.5 22.6 22.3 24.2 'S55.0 S4.7 48.4
0.6 20.7 20.3 24.2 52.9 52.6 48.4
0.7 17.9 17.3 24.3 50.1 49.6 48.6
0.8 13.3 12.4 24.3 45.5 44.8 48.6

t0.9 5.0 2.5 24.3 37.0 35.0 4816

0. 10.3 20.4 19.7 4.4S9 3.
02 20.5 22.0 19.9 46.2 50.1 39.8

0.3 20.0 22.7 20.4 45.6 52.6 40.8
0.4 18.8 22.2 21.2 43.6 52.7 42.4
0.5 16.8 20.3 22.2 39.9 49.8 44.4
0.6 14.0 16.9 23.3 34.4 43.5 46.6
0.7 10.8 12.2 24.4 28.0 34.1 48.8
0.8 7.8 7.1. 24.9 22.0 23.9 49.8
0.9 5.0 2.3 25.0 17.0 14.2 50.0

PCW6 PW6 VT6 PCW6 PW6 VT6

0.1 13.4 13.5 14.1 29.1 29.8 28.2
0.2 13.7 13.9 14.8 30.1 31.1 29.6
0.3 14.2 14.6 14.4 31.9 33.3 28.9
0.4 15.6 16.2 16.0 35.6 37.9 32.0
0.5 15.7 17.8 17.5 37.1 43.2 35.0
0.6 13.9 16.7 18.7 34.2 41.5 37.3
0.7 10.8 12.0 19.3 27.9 33.7 38.6
0.8 7.7 7.1 19.9 21.8 23.9 39.9
0.9 4.9 2.4 19.9 16.9 14.5 39.8
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TABLE 2. EXPECTED SAMPLE SIZE", i-OR THE PR(T.OM.S OF SECTION 3

FOR P* a 0.95 AND A * a 0.2

Po  B(N2IPWP2) E(NIPWP2) E(N2 1PWPS) E(NIPWPS)

0.1 81.1 166.4 20.2 45.3
0.2 53.0 113.1 20.6 46.6
0.3 38.7 85.7 20.2 46.3
0.4 29.8 68.5 19.1 44.5
0.5 23.5 56.4 17.3 41.2
0.6 18.7 47.2 14.7 36.2
0.7 14.6 39.8 11.8 30.3
0.8 10.7 33.4 9.0 24.9
0.9 6.9 27.6 6.7 20.5

TABLE 3. EXPECTED SAMPLE SIZES FOR THE PROTOCOLS OF SECTION 4

FOR P* - 0.95 AND A* " 0.2

P1 P 2zoP3  E (N1 ) E CN2 )-E(N 3 )

PWC2 PCW2 PCW3' PCW3" PWC2 PCW2 PCW3' PCW3"

0.2 0 140.0 140.0 67.3 95.0 112.3 113.0 54.9 77.0
0.3 0.1 93.3 93.3 51.6 67.4 73.0 73.6 41.2 53.5
0.4 0.2 70.0 70.0 44.4 54.0 52.9 53.6 34.4 41.7
0.5 0.3 55.9 55.9 40.7 45.6 40.4 41.1 30.3 33.8
0.6 0.4 46.4 46.4 38.8 39.7 31.5 32.2 27.2 27.9
0.7 0.5 39.6 39.7 37.9 35.1 24.4 25.2 24.4 22.8

0.8 0.6 34.6 34.6 37.2 31.2 18.1 19.1 20.8 17.8
0.9 0.7 30.8 30.8 35.4 27.4 11.3 12.9 14.9 12.2
1.0 0.8 27.9 28.0 29.2 22.8 1.7 5.0 5.0 5.0
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PPEDICTIVISM AND SAMPLE REUSE

Seymour Ceisser

School of Statistics

University of Minnesota

ABSTRACT. This paper emphasisze the paramount importance of prediction
am opposed to estimation and reviews a variety of general structures for
implementing the predictivistic outlook. It also stresses in particular the
newly devised predictive sample reuse method as a highly flexible and versa-
tile tool in low structure situations. An illustration is given to a simple
survival situation.

1. I NTRODUCTION, The fundamental thesis of this paper is that the
inferential emphasis of Statistics, theory and concomitant methodology, has
been misplaced. By this is meant that the preponderance of statistical
analyses deals with problems which involve inferential statements concerning
parameters. The view proposed here is that this stress should be diverted
to statements about observables. With regard to parameters we take the
narrow view which relegates them at most to be components of a statistical
model that are not capable of being observed or potentially observed. This
is not necessarily to deny them their utility in many hypothetical frame-
works but there has been a strong tendency to exaggerate their importance in

% statistical inference. Even such a compelling "parameter" as the speed of
light is in some sense ostensibly capable of being measured (observed) though
perhaps subject to error. In this sense it is at least a potentially
observable entity. Other values which often are misdesignated as parameters
are those defined as a function of a finite number of observables or poten-
tial observables which typically occur in sample survey situations. For ex-
ample we may be trying to "estimate" the total response of a specific finite
population by observing some random portion of that population. The unobserved
responses are presumably potentially observable (or the randomization is mean-
ingless) and it is maintained that we are basically predicting them or some
function of them. This is certainly within the realm of prediction though it
is generally referred to as estimating a parameter of a finite population.
Hence these two previously mentioned cases, measuring some physically mean-
ingful constant and estimating functions of observables are within the realm
of predictivism. It is our contention that in other cases the introduction
of a convenient parametric statistical model seems to impel statisticians to
reformulate an experimenter's often imprecisely framed question concerning
the data into a parametric analysis even when the parameters are completely
artificial constructs. We then proceed to foist upon the unwary client
"precise" statements abouL these too often nonexistent entities. This ten-
dency is reinforced because we have too long been subjected to solutions to
hypothetical problems which invariably begin -- "suppose we are interested
in the estimation of a parametric function BIAH(N)." This stress on para-
metric inference made fashionable by mathematical statisticians has been not

Ths work was support-d tn part by ' J. Arnm Zrant [DAriit-Yh-•-O~".
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only a comfortable posture but also a secure buttress for the preservation
of the high esteem enjoyed by applied statisticians because exposure by
actual observation in parametric estimation is rendered virtually impossible.
Of course those who opt for predictive inference iae. predicting obser-
vables or poteritial nbservables are at risk in that their predictions can be
evaluated to a large extent by either further observation or by a sly client.
withholding a random portion of the data and privately assessing a statis-
tician's prediction procedures and perhaps concurrently his reputation.
Therefore muuch may be at stake for thoses who adopt the predictivistic or
observabilistic or aparametric view. But its relevance is clear.

It was the burden of a previous paper Geisser (1971) to araue that
moet problems currently cast in term of parametric estimation and testing
could be more informative ly ref ormualated in a predict~ivis tic modes. A general
catalogue of such problem. was presented there and the Bayesian inferential
approach stressed. In this paper we shall discuss the problem of prediction
per as from a variety of structures ranging from hi'lh to low depending upon
the amount of information infused into the model. In particular we will
stress a new low structure approach termed predictive sample reuse.

2. HIGH STRUCTURE. The high structure approach to statistical prediction
involves the tight apparatus of a prior distribution for the parameters invol-
vixug known hyperparameters and a specified likelihood, i.e. a joint sampling
distribution of obsezvables, past and future, as I.t were. Hence we need assume
that (x1...,JXN; XN+l,. footXNM) or in a more coupact notatinn (x(O), x(H,))

has joint distribution F(x(N4); x(MWI8) where 0 is a set vi~ unknown para-

meters. Further, a prior distribution on e, say G(9Ir), is also assumed
where the set of hyperparaumters T is known. The posterior distribution of
8is then based on the observed X (N) 0 (N)

G(S lx(N),,r) -~ (4 GS(91'G ) (2.1)

where

F(x(N)I,r) FJ (x(N) 18) d G (el ) (2.2)

This then 3ermits the calculation of the predictive distribution ofX M
given 3% and r, resulting in

(N) -(N)P(X(N)Ix ,r) J' (x(I ,8) d G;(01x(N),,r) (2.3)

where
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F tXF ((M N),( ) (M) (2.4)

The denominator of the above being the marginal sampling distribution of

the observed random variables X(N ). In essence, (2.3) represents the
ultimate in statistical prediction and everything else is a summary of
one kind or another of this distribution function. If point prediction
is of interest then one might choose as a point predictor the predictive -_
expectation of (2.3)

E(X(M ) .- x) ) (2.5)

or the median or the mode of (2.3) or whatever ensues from a particular
loss function.

Often in this approach there is a necessary relaxation of the
assumption that r is known. This is generally handled in one of two
ways. First it is often the case that little loss in terms of inco-
herence is engendered by assuming an improper prior for the hyperpara-
meter T. Hence a new predictive distribution is obtained by
calculating

P(X(H) XMN) m P(x(M)jIx.(), r) d G (,r) (2.6)

A second approach, usually associated with empirical Bayes procedures, is

to "estimate" r from the marginal distribution F(x( I r) given in
(2.2) by maximum likelihood or the method of moments or any other conveni-
ent procedure. This then results in an approximate predictive distribution

P(x(H)Ix(N),A) and a point predictor, say, E(X(M)Ix(N),•).

Historically there have also been two other high structure approaches.
The first by Fisher (1956) was termed fiducial inference and the second
Fraser (1968) termed structural inference. These generally require for
their implementation, a much more restrictive sampling distribution and an
assumption of complete ignorance concerning e which in turn implies the
absence of r. Here one would calculate the fiducial or structural distri-
bution p(eix(N)) and then compute the predictive distribution of X(M),

P xI(N)) - F((M)H,(N),e) d p (I1(N)). (2.7

This type approach is at most valid only under stringent assumptions.
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Many statisticians have questioned its validity entirely. Recently Barnard
(1975) has developed a pivotal approach to parametric inference. His
approach, as demonstrated by Hinkley (1975), can easily be adapted to a

3. INTERMDIATU STRUCTURE. The classical (Neyman-Pearson) approach

only assumes (x(N);x(M)) --l(x(N),x(,)Ie), i.e. a sampling distribution

and enough structure on the distribution so that one can compute, independent
of 8,

Pr [()E A(X(N)] *o (N) (ii

This of course is not a probability statement for X(N) x , as in the
Bayes approach. Here p represents the degree of confidence that

(N)
, A (xFA ), p being a valid probability in the sense of the lon -term

frequency of repetitions from the Joint set of random variables (x
In other words, p is the proportion of times in the long run that .•

x(M) E A (X(")) and is interpreted as the confidence one has in

E A, (x(N)) once x(N) = x(N) has been observed. This is usually
referred to an a tolerance interval in the statistical literature. For
example, if we are dealing with the problem of predicting the N + 1 obser-
vation XN +1 rom the first N observations, X X and assume that

Cxi) i - 1,..., N + 1 are iid N(8,1) then one notes that for
X~uII~i~lIiN

-1
XN-xN+l - N(o, 1+N-) (3.1)

From (3.1) we obtain

Pr r5 Pr +S X !C
-P Nl 14 (3.2)

. (b) - (a)=p,

where I (y) is the standard normal distribution function.

While (3.2) is a probability statement, once we observe X N x-N and

calculate the limits, this now becomes a confidence statement and has only
the restricted interpretation discussed before.

A point predictor is usually obtained by inserting in E(Xc(IX 'x(N,-e)
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an estimate • (x for e - the expectation being taken over the condi-
tional s~mpling distribution.

Another approach, having its roots in Fisher'a work (1956), termed
redictive likelihood, has recently been independently introduced by Hinkley
1975) and Lauritsen (1974). Here as in the fiducial approach, sufficiency

though in an extended sono*, plays the key role. It is assumed that
•X(" ;X(M)) have likelihood L(x)';x(M1)I) which admits a totally

sufficient reductlon of the data. In the case of independent and identically
distributed random variables a minimal sufficient reduction need only be
available, In this latter case as pointed out by Fisher (1956), a minimal
sufficient statistic is a function of the individual sufficient statistics
from any portion of the entire sample. The concept of a totally sufficient
statistic introduced by Laurituen (1971) permits extension of this result
to the more general case of dependence.

Let a a a. and a (M)) be the set of totally
sufficient statistics for e based on the random variables to be observed
and those that are to be observed and predicted, respectively. Then one can
obtain, independent of 8, the conditional probability function

f(s (x (N))I&.(N(1,.(M)) ) (3.3)

which is now defined as being proportional to the predictive likelihood i.e.

- f(,,,+s P rlk (x(N)1•(M)). (3.4)

This is then treated as is the usual L(xle) where now X(M) takes on the
role f 6. the ~ed vlue ~(N) (4role of 6. For the fixed value x\ the predictive likelihood orders the

plausibility for various values X((M) - X(W). For a simple example, consider

Xi, i - 1,..., N + M as Bernoulli iid random variables where

P(XilQ) . I-P(Xi=O) - e. If r out of the first N are l's, we can order

*, possible predictive values for the number of l's, say t, in the next H
N M

trials. Defining R Xi~iX, T E- XN + V which are sufficient, we can

compute in a simple fashion

P[RurIR+T = r+t] ( + H prlk (tnt) (3.5)

r+ t

which is used to order the plausible values for tmO,...,M.
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A point predictor can conceptually be obtained by maximizing the
predictive likelihood. In the case where M > 1 and the random variables

aere iid, it is clear that prlk (x(M)) will have multiple maxima due to

the exchangeability of the likelihood. This must be so and should be no
cause for concern. In the previous example though, there may be a unique
mnaxima at some value of t and be adequate if t is to be predicted. It
is clear, however, that if the individual XN+I,...,XN÷M are to be pro-

dicted and the maximum was at t = t , say, then every partition of

XN+"l,...,xNM into t l's and M-t 0 O's would also yield identical

maxima of the prlk (x(M)"

For a variety of interesting applications of predictive likelihood to

standard statistical situations, the reader is referred to Hinkley (1975).

4. LOW STRUCTURE AND ASSESSMENT. Before actually discussing techniques
available in low structure situations it will be useful to review a very old
and informal method of considerable value in comparing point predictors.
Suppose several predictors are suggested for a set of data, then a fruitful
comparison of them may be accomplished by a validation technique. The sample(N andn
X is randomly divided into two parts x( W(x and

x(n), (xNn+l,... XN) called the construction sample and the validation

sample respectively. Assume also that associated with each sample point xj

is a known value xi. The data analyst then computes the competing predictors

from the construction sample obtaining, say, Aji(x(Nn),z(N-n);zj) J

as the ith predictor for the value x at known value z b

j = N-n+l,..., N; i = l,...,K where K represents the number of predictors

to be compared, and Z (N'n) W (zl,...,zN-n). First the residuals

Aji xj o rji are computed and then the empirical distribution functions of

residuals are plotted for each predictor. A comparison of these empirical
distribution functions will shed much light in determining which predictor is
most appropriate. Sometimes when the validation sample is not very large a
relevant summary measure of the predictive discrepancy is adequate for compari-
son. For example we might compute the predictive mean squared error

a 2 - (N-n)-• r2  i-l,...,K. This procedure is generally useful onlyiiJmN-n+l
when a reasonably large number of observations is at hand. This is often not
the case. Also the procedure seems inefficient in that it does not extract all
of the information in the data. To overcome this a technique which is referred
to as simple cross-validation may be substituted.
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iot - (lO.,x , 6,o°,xN) with correspondingS..

z o (Smite..oj.1 zj+l#...,ej) be the data set with the obser-
vation omitt~ed. Nowe for each predictive function we compute the predictor

9 ,J Z ) for the omitted observation xj and re-

peat this for j-l,...,N for each predictor obtaining rjj * - xj.
Similarly a in the validation set up, we are in a position to compare for

each predictor its empirical distribution function or a relevant summary
measure of predictive discrepancy. However in the case of simple cross
validation we have N residuals f or each predictor instead of n as in the
validation case. One caution is in order -- in the validation case the
residuals are dependent only by virture of the same predictive functionI
while in the simple croon-validation some further algebraic dependence
creeps in as a result of using the data repetitively. On the other hand
the simple cross-validation assessment uses all of the data while the vali-
dation assessment only uses a sample of the data. Notwithstanding, the
cross-validatory assessment procedure is certainly very useful for the
comparison of predictors generated from various structural assumptions as
the basic dependence is the same for all of them.

However there are situations where specification of a particular
sampling distribution and the resultant predictor based on such assumptions
may be fraught with peril. When a particular sampling paradigm becomes diffi-
cult or impossible to identify, and yet prediction in necessary, data analytic
techniques based on minimal assumptions need come to the fore. One such
technique, termed predictive sample reuse (PSR), Geisser (1974a, 1975a) or
cross-validatory choice, Stone (1974a), is currently a leading candidate for
a satisfactory resolution of this low structure case. It may also be of
service in what are basically higher structure situations as we will detail
later. First of all the PSR method, when flexibly used, is very likely
to be robust for a variety of sampling paradigms. A second feature is that
it simulates the predictive process upon itself in some optimal fashion often
using some structural hints. It is even capable in one of its manifestations
of comparing a variety of approaches. Essentially the goal is to predict a
future observation or set of such, or some function of them. For the purposes
of this exposition we shall restrict ourselves to a single future observation

- with a form arbitrarily chosen for predicting it as

x - x(x,z,z;c) a E 0 (4.1)

where u is some set of unknown values, X - (xl,...,xN) represents a sample

of size N and with each xi is assonia,-d a known zi, and Z - (2l,6.6,2N).

It must be stressed that in thia approach a is not a platonic ideal nor in
any sense a true value of paramount importance. It is to be regarded as merely

a convenient way of forming a predictive function. Let P N-n) represent the
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ith partition of the sample N-n retained and n omitted observations
0 < n !C M, where M is the largest integer such that the predictive function
(4i.1) can be formed with N-M observations. More precisely, the observa-
tional set X and the set Z with which it is associated are partitioned
such that

p ( -'n) .",X(N-n)' z(N'n); X4n), z.()o (4.2)

th
* iis the i partition belonging to a set r of partitions relevant to a

particular schema of observational omissions where IX(N'n) Z(N-n)) and,~ ir ir an
(x'), zio represent the N-n retained and n omitted data sets, respec-

tively. Let the total number of such partitions be P(N, n, r), or simply P.
The specified predictive function is then applied to the retained observations
for prediction of the omitted observations for each partition with the unknown
set of values a estimated by means of optimizing an average discrepancy
measure, day,

D1 4,n() P-ln-1  Z d(Xo)', )(n)(.(N-n), Z(-n) Z(); a)) (4.3)i o L "irr ir iO

where each element in the eat 1(n) is the form of the predictive function
io

and d is a measure of the discrepancy of the set of values X n) from

the set of predicted values 9(n) for given a. is then optimized
with respect to u in some sense. On the basis that this leads to a
solution say, A, we obtain the predictor k - x(X,Z,z;A) .

When predictive functions are to be compared irrespective of their
generation one can use a cross-validatory assessment. For a given discrepancy

measure we could consider for the ith partition the set of retained observa-

tions and associated values (X(IIn) Z(n) and partition this into two sets
~i two..

(x(N-n), Z(N;2n). X(n) z(n)i From this reduced set of N-n observationserr ' irr ire' ire'

and associated values we would, as previously, obtain an 8 and compute

the discrepancy (not necessarily based on the same d as was used to obtain
the predictor) between the values predicted for the n omitted observations
and the actual observations themselves. Repeating this for each i we would
then compute an overall discrepancy measure

DNn 1'' -1 d(n), i(n) (x(N-n) Z(N-n), Z(n);
i or "is ir r 'i ;•) ••

•i! " • , ,... . , .. ....6



for each predictive function. This measure then would be relevant to
assessing either different predictive functions or various estimators
of i in terms of predictive discrepancy for the same predictive
functions. We also note that comparisons other than the average

DNn can be utilized, e.g., empirical distributions of the discrepancy

can be compared for several predictors. A variety of applications of
PSR can be found in the following papers, Geisser (1974a, 1974b, 1975a,
1975b), Stone (1974a, 1974b). Here we shall only present one such very
simple application involving a data based predictor which is to be
combined with limited prior information. Let the predictive function be 1 ;.
where & represents a prior guess at the value to be predicted and h (X)
the data based predictor. We shall use the squared discrepancy measure,
with a one-at-a-time omission schema so that

DNl(a) N r, (uh + (1-U) g-X )2  (4.6) JI
where h4 is of the form h, but based on N-1 observations, i.e. x

has been omitted. Maximization of DNm1 (cv) with respect to a yields

mh if a

i f 0~ (4.7)

., . ( h + (-ag otherwise

where

N
Nýh-)(,S (4.8)

NN

In particular if h * x then for a2 (N1)I and t

2_mt_ - if t 2 > 1

~t2 + (N-I)4

otherwise.
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1his procedure has the property that if the sample mean is within one
sample standard deviation of the mean from the prior guess g one uses g
otherwise one uses the linear combination. Further as the distance between
the sample mean and g increases relative to the sample standard deviation,
greater weight is attached to the sample mean. Moreover as N increases the
predictor tends asymptotically to the sample mean.

In many applications it would appear that observational omissions one-
at-a-time are appropriate. However there are some applications where this
may not be the case. This point and others involving various schemata of
omissions and choice of relevant partitions are discussed in Geisser (1975a).

There have also been various attempts to extend PSR point prediction
to sets, intervals, and regions. It is not yet clear as to how satisfactory
any of these methods are. Pertinent references are Geisser (1974b), Hinkley
(1975), Butler and Rothman (1975).

5. AN APPLICATION. We now illustrate how some of the previous method-
ology might be applied in practice to what may be termed a simple survival
situation. Suppose we have a random sample X1 ,...,X N on an exponential

random variable X whose density is

f(xL) " ' p. > 0, x > 0. (5.1)

Further suppose our prior objective or subjective information is subsumed
in a prior density for p.,

p(0)-.- e"', > 0, 6>0. (>.2)

Here • takes the place of 8 in the high structure Bayesian approach and
r - (8,y). Our interest is in predicting a value x for the random

future observation XN+1 given the previous N observations .:(N), say.

Then the predictive density for XN+1 is easily calculated to be

f(xN+11 (N)) = 1; P(lx(n)) f(xN+lILi) du

S(N +•)(N + v) /(N + y + x.+) z > N,

where x is tho sample mean and p(ktlx is the posterior density of L(N)

given the pruvious N observations x(N)* Hence our forecast about XN+l

involves the hyperparamerers y and 5 which enter the problem via the
distribution of the parameter p. Before any observations are taken one can
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also find the predictive (marginal) density of the generic variable X,
namety

f (x) uf f(x Iij)p(L4)di,& (2
8-61(Y + X)8+I, x >o0.

Hence it is convenient and more appropriate from the predictive view to
think about these hyperparameters in terms of predicting X before any
observations are taken rather than in how they modulate the assumed prior
distribution of 6,. Therefore, prior to the sample, we have

E(x) - Y/(8 -l)-g

iVar(X) P y/8- )(8 -1)2 8:2~(l + a)/(l - a)

where a = (5- 1) -l

Clearly Var(x) exists for 0 < a < 1, and E(X) exists for A > 0
while the distribution exists for all a f [-1,0]. Hence if one could i

frame his prior opinions about the potentially observable values of X
* l in terms of its expectation and variance then one can easily execute

the whole predictive process by solving for the appropriate values 8 *1
and y from (5.5) and substituting them in (5.3).

* It is to be noted that (5.3) and (5.4) were obtained from (5.1)
and (5,2). However, for the predictivist who would prefer to start from
(5.1) and (5.4) in terms of convenience of framing his predictions this
is somewhat awkward. Interestingly enough in this c.ise starting with
f(xlu) and f(x) is sufficient to obtain p(u) and f(xN+lji), which is

a more logical and appealing approach for the predictivist. This is

possible here because f(x) is the unique Laplace transform of •.

Now as we mentioned previously positing all of these assumptions
yields the requisite information for making probability statements about
a future value provided that one has specified values for g and cc. How-
ever while one may often be willing to hazard a guess at g, one may be
far less willing to specify a value for a. So in further analysis of this
problem we may be in a position such that some of the parameters of T are
assumed known and others unknown. Assume then that g is known but not Ot.

One approach for estimating a or 6 is from the marginal density

-• . ~f(xV,...xN18,¥) 3-'Yx,.,Xll(• ,) 'tý'

r( N+5)
. ) - N+ 8

[Nx+y]
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Since we assume g - 61 is known we let Y, g- X, and obtain for
N

i-i

f(•l,.., al), r(N+8) (-I8 157
r(8) [Nj+8-l]N(5

N
Clearly Y od is sufficient for 6 in the above likelihood. The

density of S is then easily obtained to be

f(.16) ((-1)6 r(N+6) aN(. (5.8)
r(N) r(6) (,,6-11N+'

which implies that V - 02 (06; N, 6) a Beta distribution of the second
kind. The method of moments essentially fails here to yield a sensible
estimate e.g. E (S) = N, which is uninformative relative to 6 or a.
Use of higher moments tends to restrict the range of 8 and renders it
unreasonable as an estimator. The reason that moment estimators are
basically inappropriate here is that they assume the existence of the
moments used and hence tend to presume a restriction on the range of 6,
whose restriction on the outset is 6 > 1. One can use however maximum
likelihood estimation. Hence we calculate

2LOgf -l 6-1 + 8 + 1 1 N+8 (59
a 6 9876- 8-1 8 i6+1 T - s+6 -(s

and one would have to find by one means or another 8 satisfying logf = 0.a 6

An explicit solution for 8 seems impossible to achieve. One can approximate
(5.9) by using the Euler..Maclauren sum formula so that we obtain for large N

alof 1 6 8 N+6 N+6 1 1 (5.10)
6 8-1 los.-71 + g-oj8-1 - -s-+F-l +268 " -- 6+N)(.0

This is still quite formidable and when set equal to zero still does not yield
an explicit solution for 6.

We now show how PSR may be of service even in this high structure
situation. Suppose we were to predict a single value XNA1 from (5.3)

using the predictive mean

E(XN+1I1 7 ) = ( +rx + g)/(c N+l). (5.11)

Apply the PSR method for the estimation of o using (5.11) as a
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predictive function and squared discrepancy with one-at-a-time omission
:,. schema so that

SN,(u) - N-A ( g(N-) " xj (5.12)

where x is the mean of the observation with x omitted. Minimization

of DwlIt5) with respect to u yields

" ^ • for t' > 1
(5.13)

CA 0 for t2 •l

"where t 2 - N(g-x) 2 /sP and a , N- (xi'x)'" Hence PSR may be used

to generate estimates even in the high structure case. On the other hand
using (5.11) and (5.12) as a predictive function and discrepancy measure
respectively yields a PSR predictor

-N+ ( Ný + g)/(a N+l) (5.14)

that does not strictly depend on high structure assumptions. In fact it
may be robust for a variety of high structure assumptions which result in
a predictive expectation approximately equal to (5.11). Actually if one
did not use any high structure hint for a predictive function for this
problem but merely used a convex combination of sample mean and prior guess

X --* x + (1-w*) 0 ! 1, (5.15)! XN+1

then the result for or was already obtained in section 4 as

N
-(t2 _1) + Ng i 2 >: XN-1 if t2 > 1

XN+l (N-l)"l (5.16)

Sg iif t,' jf

This may be contrasted with (5 .14) when the value for & is inserted
which turns out to be

XN+l t;, -- >

N~l t(5.17)
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The predictor in (5.17) is weighted slightly more towards x than

(5.16), but in fact they are asymptotically equivalent to order N•
In any practical example there would probably not be much to choose
between them.

It is also to be noted that the intermediate structures are difficult
or impossible to apply in situations such as this one where there may be
some prior information that should be taken intco account.

6. REMkARKS. A somewhat abbreviated exposition of the predictivistic
view has been presented. This view is not a mode oe inference as such but
can be implemented from a variety of inferential modes. It stems from the
attitude that inferences should be restricted to potentially observable
entities unless compelling reasons to contrary exist. In conformance with
this view we have presented various ways, arising from different stand-
points, of implementing the predictive approach. In particular a recently
developed low structure approach PSR has also been delineated in some-
what greater detail, which should be of great value in many situations and
need be added, we believe, to the toolkit of every statistician.
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VARIOUS METHODOLOGICAL APPROACHES TO PEER EVALUATIONS

Ronald G. Downey and Paul J. Duffy

U.S.Army Research Inotitute for the Behavioral And
Social Sciences

Arlington, Virginia

When confronted with the prospect of drawing order out of complex

human behavior in the equally complex world of work, two primary charac-

teristics have marked traditional behavioral science research. First,

heavy reliance has been placed upon human evaluations or ratings of

other humans. Secondly, these performance or trait ratings have been

predominantly gathered from a limited observational viewpoint, namely

the supervisor. The technique outlined in the present paper does not

deviate from the first of these characteristics; it does rely on human

evaluation of other humans. However, it goes beyond the second charac-

eristic by gathering such evaluative information from the additional

perspective of an individual's peers. For purposes of the present

paper, peers are operationally defined by their sharing of some common

purpose (e.g., members of the same work group), and generally by the

lack of a formally recognized authority relationship between them. The

term associate will be used interchangeably with peer.

The history of peer evaluations can be traced back to post World

War It work by Williams and Leavitt (1.947).l The history of the techni-

que can be traced bick even further to the. original work of '.Mor.no (1934)

and his development of the sociogrom technique. Since that time, peer

evaluations have been used for two primary purposes. The first of

Some re:sear,_h efforts were reported befco'r thin, during- and Just after
World i.:r it. Sot,, for e:.a:;-; .1o, Ciar,:,. (19 5) , U " Av,.•v !'e.;enrcrh
In:;. it r-e (No*.e I), n n L: U.S. Ar;:y Pc c.L; r 1n:;t-tti L . (u1. te 2) wll ure p o'er
(v:alii: t ion:; t.,re t stid as cri il1L.[. '0 1..- at r:;hip
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these purposes is evaluative in the criterion sense (i.e., leadership

effectiveness, job performance, etc.). The second purpose is evaluative

in the sense of predicting future behavior or success (i.e., motivation

to work, goal orientation, potential, etc.). Lindzey and Byrne (1968)

have presented an excellent review of the use of social choice method-

ology of which peer evaluations are one type. More specialized reviews

of the work are: Gibb (1961), Cibb (1969), Hollander (1954), Boulger

and Colmen (Note 3), and Nadal (Note 4).

Aside from considerations'about the use of peer evaluations,

another major issue centers on what the dimension is which peers are

evaluating. For instance, previous research has been directed at peer

evaluations of leadership (Hollander, 1965), personalit7 traits (Tupes

and Christal, Note 5), and supervicor skills (Weitz, 1958) to name but a

few of the dimensions which have been investigated. While we will not

directly address the issue of which dimension is measured, it is

probably the single most important decision the researcher makes in

the design of the experiment.

Given this short background we will address two major areas which

relate to the development of a peer evaluation system; first, method-

ological considerations and second, situational factors which could

impact upon the evaluative process.

To tI.cilitate understanding of the methodological issues, they will

be described in terms of effects upon the major scaling techniques

available, of which there are four: ratings, rankings, full nominations
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and high nominations. A summary of the following discussion is provided

In Figure 1.

Mothodological Issues

The general paradigm of the rating technique calls for a group

member to provide a rating of the relative amount or degree of the

dimension under consideration possessed by every other group member.

The ranking procedure simply requires each group member to rank order

every other group member from high to low (or some other relevant

continuum) on the dimension under consideration. The full nomination

technique requires that each group member choose a specified number or

"proportion of the group as being either high, medium, or low on

the dimension. In the present paper, the minor variation of this

technique whenever middle or medium nominations are not required

will also be referred tc as full nominations. However, the case where

only high nominations are elicited is reserved as a discriminably different

technique for reasons to be elaborated in later portions of the paper.

Several variations based on combinations of these basic techniques are

forced distribution rankings or combinationts oF rankings and ratings or

nominations. General scoring algorithms for the four primary techniques

are presented below:

Ratins
Score - r

N

Rankings

Scare Er~ (100)
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Full Nominations

Score- ICl x rL) +. E(2 x rM) + E(3, N~jN

High Nominations

Score ErH
N

where rRt a Rating

rRk - Ranking

rL - Low nomination

rM - Mid (or no) nomination

rH - High nomination

N - Number giving an evaluation

NT w Total number in the group

By inspection, several characteristics of these formulae should

be noted. All of these techniques produce scores which are, in

general, independent of group size with the exception of the rank-

ing formula in which case adjustment must be made for group sizes

greater than 100. It can also be seen that the average score for a

group using either a ranking or nomination technique is determined;

the average score for the rating technique is free to vary.

Metric and Distribution

The metric and distributional properties of associate evalua-

tions are directly related to the particular techniq% employed.

With respect to the scaling properties of the various techniques, the

rankings an,' Lath nominations from an evaluator are ordinal data

(Stevens, 1951). The ratings from an evnluator are the most nearly
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interval data although here also it can be argued that these are

merely ordinal data. The scaling properties of the summated scores

from the various techniques approximate interval data am the number

in the evaluation group increases.

In addition, the 4 most common procedures will commonly produce

different distributions, examples of which are displayed in Figure 2.

Given the free response mode for ratings, they will often produce

negatively skewed distributions due largely to group norms to inflate

any evaluative procedure. The ranking procedure, if it were perfect-

ly reliable, would produce a rectangular distribution with one person

at each rank. Generally, less reliable rank scores will tend to be
PA

normally distributed with even less reliable scores producing a more

leptokurtic curve, and a perfectly unreliable test producing a point

distribution with everyone receiving an average rank equal to theAo

middle rank. Full nomination scores produce a distribution which,

if perfectly reliable, is tri-modal with one group receiving all

high nominations, a group with all low nominations and the remainder

having middle nominations or none at all. High nominations only pro-
duce a bi-modnl distribution (not shown in Figure 2).

Basis of Comparison

Scores which result from the four primary techniques vary along

another important dimension; that is, the internal procuss evoked

in the evaluator upon which he makes his Judgement. In one case, the

evaluator compares the particular Individudl against some external
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(to the group) frame of reference and assigns him to some category.

In the second case, tie evaluator compares the particular indivi-

dual against some internal (to the group) frame of reference and

makes a Judgement of more or less and assigns him to the appropriate

category. The external process can only be used with the rating

procedure. The internal process can be used with the ratings, but

it must be used with rankings and nominations. It should be noted

that the internal process, in general, requires a moderate number of

individuals in the group (more than 5). The direct implication of

this distinction is that the external frame of reference allows both

comparison between individuals across peer groups and the comparison

of peer groups. The internal process does not allow comparison

between individuals across peer groups unless the assumption is

accepted that the groups are equal on the particular ability, trait

or behavior.

The corollary of this implication is that population norms

can be developei only through the use of a rating procedure and an

external frame of reference.

Reliability

The reliability of associate evaluations has generally been

determined by one of two methods, internal consistency or test-retest.

Both methods are analogous to the same procedures in classical test

theory (Lord and Novick, 1968).

The internal consistency of peer evaluations is the degree to
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which members of a peer group agree with one another when observing

an individual in a similar situation and at the same time. Using the

multiple choice test paradigm, the evaluators are comparable to the

test items and those who are being evaluated are comparable to the

people taking the test. While Gordon (1969) has recommended the use

of the alpha coefficient for estimating the internal consistency or

reliability of peer evaluations, the most common procedure has been

a split-half (or group) estimate. The split-half estimate is made

by computing scores for all group members, randomly assigning peer

group members to one of two groups, and then correlating the scores for

each rates from each group (See Hollander, 1957; and Downey, Note 6).

The correlation is then adjusted for the total group size' unin the

Spearman-Brown formula (Gullikeen, 1950). If small groups are used,

a random split may not be possible and some technique for averaging

the intercorrelations between evaluators could be used (Gulliksen,

1950).

The test-retest method of estimating reliability requires that

group members evaluate each other at two different times. Scores

from the two different evaluations are then correlated. Examples of

this type of estimate are given in Hlollander (1957), Downey (Note 6),

and Downey (Note 7). Perhaps the most rigorous examination of relia-

bility was done by Gordon and Medland (1965) where they varied both

time and group doing the evaluations and found rellabilitivs in the

80's.
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Research has generally found the reliability of peer evaluations

to be in the .70 to .90 range, regardless of the reliability estimate

employed. Research which has compared the various evaluative method-

ologies is rare, but, in general, has supported the view that all four

*• methods are quite similar with maybe a slight advantage to ratings

(See Suci, Vallance, and Glickman, Note 8; Downey, Note 6; and Hammer,

Note 9), Even the use of a paired comparison procedure does not

significantly improve reliability (Bolton, Note 10). The selection of

a particular technique will rarely be decided by differences in

reliability between the techniques.

Acceptability

A major factor in the success or failure of a particular resenrch

program is the degree of involvement and commitment to the program

on the part of the participants, inother words, acceptability.

Acceptability is generally studied as d specific issue of the particu-

lar program under investigation rather than comparative analyses of

acceptability across techniques or situations. There is, therefore,

little formal evidence of differences between techniques but many

inferences can be drawn based upon the particular qualities of the

technique. A major factor in the accepLability of a technique Is the

degree of perceived difficulty. From this point of view, both the

rating and ranking of large numbers of people (greater Lhan 20) canl

be time consuming and makes for difficult discriminations among the

average members ot the group. On the other hand, the nomination
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procedure allows the individual to place a large number of people

in a desired category and does not force him to make difficult discrimi-

nations.

The rating procedure is quite acceptable where the group is small

and cohesive. The full nomination technique Is acceptable for moder-

ate to large size groups where not all individuals are well known to

one another. The high nomination technique is even more acceptable

because it does not require an individual to make negative evaluations.

A major determinant of the degree of acceptability is the degree

to which group members are knowledgeable about the evaluation procedure,

process, background and use. Downey (Note 11) found that accept-

ability improved as a function of an educational program. Two differ-

ent types of attitudes were found; first, the degree to which peer

evaluations were felt to be valuable and accurate estimates and,

second, the degree to which they were acceptable for particular uses.

Downey also found that the peer evaluations and acceptance were

positively related, with larger relationships being found in the group

with less information on the peer evaluation process,

Feasibility

Closely linked with the previous concert of acceptability is

feasibility, or costs associated with the implementation and execution

of a particular peer evaluation system. The major costs associated

with a peer evaluation system are: (1) preparation of evaluation

materials, (2) administration time, and (3) scoring cost. Prior to
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the advent of automatic data processing procedures, the costs associ-

ated with any peer evaluation system with large groups or on a large

scale were prohibitive. Merely in terms of bits of informationt4collected, it can be seen that the number of evaluations is equal to

N2 where N is the number in the group. Figure 3 presents the compare-

tive costs associated with each of the four techniques.

As can be seen from Figure 3, each of the 4 techniques incur

equally high costs associated with the preparation of a list of the

peers. It is important that all evaluators be provided with a full

list of all other members of the peer group. The administration time

for the full nomination technique is low due to the small number of

decisions associated with making the low and/or high choices. An

excessive amount of time is devoted to making fine discriminations

in the ranking procedure, whereas a moderate amount of time is taken

up by the rating of every individual.

The scoring of the peer evaluations normally requires access to

some sort of automatic data processing facility in all but the small-

est scale operations. The actual computer cost is virtually equal

for all techniques, but they can alffer substantially in terms of the

costs associated with getting thc evaluations into a data processable

form. Costs vary by technique as a function of using either keypunrh-

ing or optical scanning. Both the full and high nomination technlIqu•s

involve low cost and ratings also have low costs associated with

optical scamning. Rankings produce high costs in both keypunching
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and optical scanning and ratings have high costs associated with

keypunching. Generally, nominations produce the lowest costs overall

followed by ratings with rankings having the highest costs overall.

It should be noted that peer evaluation systems are relatively costly

efforts which typically require more than minimal sophistication

with data processing procedures.

Situational Factors

In addition to the methodological concerns of the various techni-

ques presented in the previous section, there are also a variety of

situational or contextual factors which can impact upon a peer evalua-

tion system, often regardless of the specific technique under discus-

#ion. Among these factors are group size, informal group structuresi ,•

de~ooraphic characteristics, group boundaries, hierarchical character-

itcfriendships, length of association and type of interaction.

Each of these factors will be discussed in turn and, where appropriate,

specific mention will be made of their effect upon the various

techniques.

Size

Vary few attempts have been made to study the independent effects

of group size. More often than not, what evidence there is for the

effects of group size has been reported as a byproduct in studies

dire.ted at some other purpose. For example, Downey, Medland, and

Yates (Note 12), used a peer nomination technique with groups of

Army Colonels in 14 career groups which varied in size from 22 to 321.
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Reliabilities varied from .63 to .94 and the rank order correlation

between group size and reliability was .03. Downey (Note 7), in

a sample of Army Rangers, compared peer ratings collected within

squads (n ' 10) with peer nominations collected on the same men

within platoons (n v 40). Correlations between the two scores were

in the .60's. However, there were indications that the platoon

scores were both more reliable and more predictive of job performance.

As mentioned previously, from the standpoint of feasibility,

both ratings and rankings would seem to be most appropriate for

relatively small group sizes (i.e., approximately a dozen), while

the nomination technique is virtually mandatory for large group

sizes (i.e., greater than 50). From the standpoint of empirical

results, it appears that small groups '-y produce unreliable scores

with reduced validity. Alternativel,, while 't is rational to believe

that there is an optimal upper size peer group, there is scant

evidence to support this view.

Informal Croup Structures

Given the well documented ract that wIthin any formally defined

group there may exist one or monre infornial sLubgroups defilned by some

sort of mutual self interest, the issue arises as to what. effect these

informal subgroups may have on a peer evaluatloil prockdure conducted

in the total group for a purpose other than finding what subgroup

structure exists.

For example, the worst case wouldl be one ii whiclh two equal-
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sized informal subgroups existed within a total group and included

each group member exclusively in one or the other. In such a situa-

tion, it can be assumed that one or both subgroups might make their

evaluations solely on the basis of subgroup membership, i.e., on a

r basis other than the one intended. The net effect of such behavior
p.

is to attenuate the validity of the peer evaluation procedure, and

it is most pronounced when both subgroups engage in such behavior.

The effect diminishes if one of the groups does, in fact, provide

evaluations on the dimension intended. The effect also diminishes

as informal subgroup size decreases or as the number of subgroups

increases.

In terms of technique, the effect of subgroup behavior will be

pronounced if ratings or rankings are used with resultant scores

most likely to be negatively skewed. The use of full nominations

will tend to produce scores with decreased variance, and high nomina-

tions will produce the worst case with a drastic roduction in variance.

It is clear that subgroups of sufficient size can have an effect

upon the final ucores, and therefore the question is the incidence

of such effects and whether there exists a mechanisim for detecting

its occurrence. The simrplest procedtre for chuckbuig for these problems

is the repetitive production of rel laibllty indices as part of the

procedure for producing peer scores. If the reliability :oet[ficlents

were to drop below .60, It would seem to Indlcate a problem and care

should be taken iu use of the evaluationsu,. If the evaluatlon process
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is part of an ongoing process, then the use of a two-way analysis

of variance design with one factor being the types of raters and

the other factor being the same types of ratees should be used.

If a significant interaction were found, then a strong case could

be made for peer scores being at least partially the result of group

membership.

Dmnographic Characteristics

The use of peer evaluations with their reliance upon fallible

human observers immediately raises the possibility of racial and sexual

bias on the part of evaluators. This concern is especially crucial

in view of recent problems associated with demonstrating the absence

of bias in employment selection and classification measures as well

as criterion measures.

The evidence concerning racial bias in peer evaluations is mixed

and inconclusive. In a study dealing with Air Force recruits, Cox

and Krumboltz (1958) found that subjects were rated higher by mumbers

of their own race, but the effect variud across groups and theru

was substant.ial agreement on rank order across races (r - .76)

They conclude that the bias which might e.xi-t iS far from COnipJ1Lt'

and suggest that prior acquaintanceship of group nirmbt, r, may acV'ounlt

for the differences. In a similar study in thL, Army, clelutug and

Kaplan (1962) found similar revstlts with rat Ings differing as a

function of the rater's race.. However, an analysis of covarlancc

adjustltig for a combined interst and math 1skore showod that whltvt,,;

376

- ~- - - - -



did not give higher adjusted scores to whites or blacks, but blacks

did give higher adjusted scores to blacks. Results were interpreted

in terms of assignment of higher scores to close acquaintances which

had more of an impact upon blacks rating blacks due to the smaller

group size.

In a more recent study in an industrial training context, Schmidt

and Johnson (1971) used a forced choicu rating distribution in groups

with approximately equal numbers of blacks and whites. No differences

due to race were found.

The evidence suggests that peer evaluations can be subject to

racial bias, but the affect is perhaps more strongly related to the

interaction between friendship or acquaintanceship and the particular

evaluation method used. The presence of substantial correlations

between the rank orderings from each race indicates that a similar

view prevailed. But, the use of ratings allmws, evaluators to assign

unrelated scores to mldividuals whom they consider special. in some

way.

in terms of sexual Hbas, M•iihr ond I)owncy (N[,t 11) recently

reported results f romi a sma 1s1 1amp of ArIly Off I C, r1 which I tId I cat Ld

that females scored lowcr thUMn m.11('s on sc0 rLo* recs I'%',d [rOill both

malos atnd fVLOUS . [f hi)aLI OcCurrcd, it wii oin thi. part of both

groups. An intrest Li ', fintding w';i, Hit ft'mnllIu' swlf-rat igs wurc,

not related to either Ml 1 or tin,,, t.valuactionu. htt rlallte ' St, ' -

rat i ngs wert revl vt d to thL, o .,-c cv. i |I t io ni.
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This admittedly small number of studies appears to indicate that

differences based upon race and sex can occur, but it is unclear whether

these differences are attributable to race or sex group differences,

to interaction patterns (i.e., friendships, etc.), to the specific

methodology, or some combination of all of these factors. It would

certainly be safe to say that researchers should be sensitive to the

potential for such bias.

Group Boundaries

[1- The discussion of peer evaluations has proceeded to this point

as if it were clear just what ist meant by a peer or associate group.

Most researchers report their procedures in sufficient detail to show

the general characteristics of the groups which were, in fact, used.

However, given that there are a variety of overlapping and higher

order groups in most real-life settings, the Issue becomes that of

defining some basic guidelines for selecting the appropriate rating

group. It is clear that the selection of the evaluative group can be

effected by such factors As the length and type of interaction,

formal organizational structure, informal group structure, friendship

patterns and, of course, the particular dimension being evaluated.

As has been the case for several of the preceding issues, there

Sis little empirical data to guide the selection of the group. Rather,

guidelines must be best guesses based on partial information from

related data.

In the previously mentioned study by Downey (Note 7), it was
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found that platoon evaluations proýur d more reliable and slightly

more valid scores than squad evaluations, but the differences were

potentially confounded by differences between both method and size.

A study by 'ordon and Medland (1965), in which individuals were

evaluated at two different times by totally different groups of

different structure, indicated a high degree of stability across the

two evaluations. Even the method which was used to compute reliability

indices, random splits of the primary group, supports the notion that

group composition can be drastically altered without major problems

arising in producing reliable and valid scores.

A concept related to that of group boundaries is that of hierarch-

ies. For example, an Army platoon is made up of 4 squads, each headed

by a squad leader. If the platoon is chosen as the peer group, the

issue is whether the squad leaders should be included in the process.

Folklore holds that the inclusion of such individuals will often work

to their disadvantage, and therefore they should be excluded from the

platoon peer group and included in a peer group of squad leaders.

Research by Levi, Torrance, and Pletts (1958) indicated no effects

from including the formal leader in the peer evaluation process.

Research by Downey (Note 14), in which the leaders of small combat

units were included in the peer nomination process, indicated that

the leaders spanned the full range of leadership potential scores.

And, rather than being penalized, there was a positive relationship

between formai position and peer evaiunLion scores (as there should
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be if the selection procedure for leaders had any validity originally).

It should be pointed out that these data were experimental and

the introduction of an operational system may change the situation

depending upon the use to which the resulting evaluations will be put.

A rational solution to the problem should be guided by the

following suggestions:

(1) Select the group to have sufficient size to overcome problems

associated with primary groups.

(2) Group size should not be so large as to produce subgroups

which may be relatively unknown to each other or be competing for

similar resources and rewards.

(3) Groups selected should be somehow reasonably related to the

dimension to be evaluated, e.g., if evaluation of leadership in a work

* setting is desired, select a work group and not a social group.

Friendship

Friendship has been a major reacarch issue in the history of

peer evaluations. This is another case where folklore has stated

that peer evaluations are the product of friendship or popularity and

are therefore not valid indications of the dimension under cotisidera-

tion. The impact of this bit of folklore has been that, with the

* exception of simple validity studies, this is probably the single

most researched question asso.iated with peer evaluations.

Wherry and Fryer (1949) were the first to address the issue.

They reportel that although there was a moderate degree of relation-
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ship between friendship and a leadership criterion, the major portion

of the predicted criterion variance was independent of friendship.

They concluded that peer evaluations of leadership are not popularity f
contests. Studies by Gibb (1950) and Horrocks and Wear (1953) in

college samples support Wherry and Fryer's findings. Borgatta (1954)

also reported that leadership and popularity evaluations were related,

but he failed to draw any conclusions. Several other studies haveF$
documented a moderate degree of relationship between friendship and

peer evaluations of leadarship Hollander, 1956; Hollander and Webb,

1955; Theodorson, 1957).

Downey (Note 6) recently presented evidence that the use of full .

nominations (with small numbers of high and low nominations required)

reduced the correlation between f:1endship and leadership evaluations

compared with forced distribution ratings.

It would seem that when an evaluator is faced with a choice of

how to evaluate a friend, he will tend to select a friend rather than

another person he considers of equal, or at least indistinguishable,

merit. Therefore, the variance associated with friendship may be a

source of systematic error primarily in the middle of the distribution.

This systematic error variance will increase in large groups where

some members arc relatively unknown to each other or the interaction

patterns are not fully established for all members.

Even in the face of the impressive research findings demonstrating

the invalidity of the "popularity contest" issue, this remains as the
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moot consistent argument against the use of peer evaluations in an

operational setting. A corrollary of this objection is the feeling

that peer evaluators do not make the right choice, the best counter-

argument to which is the impressive list of validity studies on peer

evaluations.

Lengh of Association

When peer evaluations are considered for use In any situation,

an Important question concerns how long group members must have been

in contact with each other before reliable and valid evaluations can

be provided. For example, this issue is often raised in the context

of transient training groups. Research is fairly consistent in find-

ing that peers can make reliable and valid evaluations after a relatively I
short period of time (typically 3 to 6 weeks).

Subsidary to the overall issue is the question of the effect of

including a new group member in an intact group. Mayfield (Note 14)

has suggested that in such a situation there may be reason to suspect

that a longer period of acquaintanceship is necessary for sufficient

integration into the group to occur. A more generalized way of

approaching the question is the extent to which a person is known or

not known to other members of the group. Evidence has shown that

an individual not well known to other nmembers of the group will

typically be evaluated as lying near the middle of the distribution

within the group (Downey, Note 6).

In terms of technique, a nomination procedure is most likely to
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decrease the error variance associated with acquaintanceship while

ratings or rankings would tend to capitalize on the error variance

and show a greater degree of relationship with such measures.

Type of Interaction

While the use of peer evaluations has been extensive over a span ,

of more than twenty-five years, they have nevertheless been applied in *
rather limited situations. In fact, the majority of the research has

been conducted with junior personnel in a military training context.

Recent work outside the military by Weitz (1958) and subsequent follow- '.4

ups by Mayfield (1970; Note 15) has been conducted in industry with

insurance salesmen. There has also been a recent effort to use a

peer nomination process in a senior Army officer promotion system

which produced supportive results (Downey, Medland, and Yates, Note 12).

But, until more extensive research is conducted in broader organiza-

tional contexts with a wider selection oL subject populations, the

generality of the peer evaluation process is largely a matter of

conjecture.

A related issue is the type of interaction requirod to produce

valid evaluation. Freeberg (1969) reported a study in which peer

evaluations were more highly related to a performance criterion when

the interaction between peers was relevant to the dimension being

evaluated. Bayroff and Machlin (Note 16) found that leadership

evaluations could be made in an academic environment and were highly

related to evaluations done after exposure to a situation where
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leadership was displayed. Lewin, Dubno, and Akula (1971) indicated

that video tapes supplied sufficient information for reliable evalua-

tions and were highly related to evaluations from group members.

It would be safe to assume that peer evaluations of a variety

of complex human behaviors can be rendered reliably after exposure of

the peers to each other in situations which require the individual to

interact either with the environment or with other people in work

oriented or socially oriented situations. Further, it can be surmised

that the validity of the evaluations will be a function of the degree

to which the particular behaviors are relevant to the dimension under

study. Hollander (1956) found that reliable evaluations were Riven

after one hour of discussion between peers in a Naval OCS class, but

that they had only a moderate degree of relationship with evaluations

after I weeks, and were not as predictive of eventual job performance.

This convergence of views by peers after a short period of exposure

is probably a function of similar psychological maps of behavior on

the part of peers, and the preliminary evaluations on limited informa-

tion are subject to revision based upon further information. There

would seem to be little advantage of one evaluative technique over

another as long as the technique does not require the evaluator to

make finer discriminations than are possible based on the type of

interaction.
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Summary

The peer evaluation technique has been used by researchers both

as a criterion of complex human behavior and as an index of future

potential. In either case, the particular dimension measured has

varied considerably. The present paper reviewed the psychometric

properties and related research findings of the four major techniques

(ratings, rankings, full nominations and high nominations). Several

important similarities and differences were indicated. Por example,

only ratings can produce comparable scores across different groups

without extensive assimptions. In addition, results of research indicate

little differences in measurement reliability between techniques. The

limited findings also indicate that, in general, ratings and rankings

are less acceptable and less feasible than either of the nomination

techniques.

Furthermore, a review of both the documented and likely effects

of various situational factors on the evaluation process indicated

the potential for major problems unless tie researcher is aware of the

issues. While no direct relationship was found between group size and

reliability or validity of the cvaluations, it can be assumed that very

small or large groups will produce less reliable and less valid scores.

Group structure and individual differences were found to be sources of

potential problems which must be monitored and dealt with by the

researcher. The popular issues of friendship, acquaintanceship and

type of interaction were reviewed, and there is little evidence that
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they have a major impact on the validity of the scores. Indications

are that all techniques are relatively impervious to a variety of

situatioval factors with the nomination technique being perhaps the

most versatile.

In brief, it has been shown that peer evaluations have been a

fruitful tool in both research and application. Several issues regard-

ing their use remain to be resolved, but there is sufficient evidence

to suggest that these issues are soluble and do not detract from the

conclusion that peer evaluations nre a very powerful tool for

discriminating complex human behavior.
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OBJECTIVE ANALYSIS OF CAMOUFLAGE VIA

IMAGE INTERPRETERS

RONALD L. JOHNSON

US Army Mobility Equipment Research and Development Center

Fort Belvoir, Virginia 22060

ABSTRACT. In the past the assessment of camouflage effectiveness by its

subjective nature has been difficult to objectively quantify. To accomplish

this* 63 image interpreters analyzed imagery of a missile site. Subjects

reported which visual cues enabled site detection and identification. There

were 63 detections arnd 59 identifications with 13 visual cue categories for

detection and 12 for identification. The frequency of response per category

ranged from 41 to I for detection and 42 to 1 for identification. These

frequencies were analyzed by the statistical technique "Minimum Contrasts"

at a level of significance .05 and .01. This procedure objectively determined

which target items were well camouflaged and which needed improvement.

I. INTRODUCTION.

The camouflage of military installations is becoming increasindly critical

as both ground and aerial surveillance techniques improve. The goal of the

camouflage is to increase the survivability of the installation!;, and,

Pnading PRtOhi
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- simultaneously, to be cost effective. There is always the need for a reliable

measure of the military worth of camouflage. This cannot be estimated,

however, without quantifying the effects of the applied camoutlage. In the

past, this has been extremely difficult due to its inherent subjectivity.

The purpose of this paper is to demonstrate a method for that quantification

using the statistical technique "minimum contrast" to obtain an item analysis

of the subjective cues identified by operational image interpreters.

II. DESIGN OF EXPERIMENT.

The SAM site selected for experimentation was situated in a German

agricultural area. Three levels of camouflage were applied. The first was

uncamouflaged. The second consisted of tone down painting all roads and

buildings, plus construction of an adjacent decoy site. The third level was

camouflaged by simulating the surrounding agricultural fields and trees.

* This was accomplished by using camouflage nets, directional plowing,

grass herbicide, and supplementary planting of shrubs and trees. The decoy

. site In the second level was removed. Each of the three levels were photo-

graphed with 60% forward overlap using the following 5" format Kodak film:

* . I Black and White Plus X Kodak *2402

Normal Color Kodak *2448

Color Infrared Kodak #2443

The resulting Imagery was cut Into strips approximately 15 frames long, the

SAM site occupying at least two of the 15 frames. Sixty-three US Marine

Corps image interpreters were given thirty minutes to analyze these film

396



Si

strips. Each level of camuuflage and each type of film were viewed by 4
7 randomly selected image interpreters. Each interpreter was used only

once. The visual cues that enabled the image interpreters to make a

detection and or an identification were recorded on the data sheet at the

end of each test session.

III. EXPERIMENTAL RESULTS•

All 63 of the image inte:preters detected the SAM within the alloted

30 minutes. Fifty-nine identified the site. The interpreters cited 13 visual

cues which contributed to the site's detection and 12 other visual cues

aiding site identification. The visual cues for both detection and identifi-

cation are extrapolations of specific military aspects of typical cues of

psychophysical stimuli materials such as size, shape, contrast, texture, and

color. The cues cannot be identified in this report due to security classifi-

cation, but are included in a confidential report by the duthor l/. Tables 1

through 7 contain these detection cues averaged across different combinations

of camouflage level and film type. In addition each table shows the frequency

the cue was reported by the image interpreters and which cues are significantly

different from each other at the .05 and .01 level. This test of significance

was calculated using the technique of "minimum contrast" 2/. "Minimum

contrasts" is a method to compare two proportions to determine whether the

observed contrast is significant at the chosen level. The proportions for this

study are the visual cue and the frequency the visual cue was cited by the

Interpreters as aiding them in site detection identification.
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TABLE I

Significant Differences in Detection Between Visual Cues Averaged Across
All Levels of Camouflage and Film Types.

A B C D E F G H I J K L M Frequency
A 41
B ** '22
C ** 21
D ** 19
E ** * * * 11
F * ** ** * 10
G 8* ** ** * B f
H ** ** ** ** 8
I ** ** ** ** 8 .
J ** ** ** ** 6•'
K * *** *5

L ** ** ** ** * * 3
M ** ** ** ** ** ** * * * 1

Cell SIze -63
* Significant Difference at a - .05

-*-, Significant Difference at a .01

TABLE 2

Significart Difference. in Detection Between Visual Cues Averaged Across
Film Types, Uncamouflaged Level.

A B C D E F G H I J K L M Frequency
A 13
* B I ,10
C 7

D ** 4
E ** 2
F ** - 3
"G ,IGH * ** - 3
H * 3
I ** 4
J ** 4 ,
K ** 3
L ** 3
M ** ** - 1 i

Cell Size = 21
- = Border Line Significance at m = .05

a Significant Difference at a= .0S
•* = Significant Difference at a =0
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--- TABLE 3

Significant Differences in Detection Between Visual Cues Averaged Across
Film Types, Tone-Down Plus Decoy Level.

A B C D E F G H I J K L M Frequency
A 14

B - 6
C 6
D 10
E ** ** 2
F * 5

!:G ** * 3
1-1 ** ** 2

* I **** -l

SL * * * **"0
S | M ** * "0

* 3 Cell Size= 21

- = Border Line Significance at a = .05
• Significant Difference at a = .05

•* -Siginificant Difference at a = .01

TABLE 4

SiJnificant Differences In Detection Between Visual Cues Averaged Across
Film Types, Full Camouflage Level.

A B C D E F G H I 7 K L M Frequency
SA 14
B - 6

C 8
D * 5
.E * 6
r ** 2
G ** 4
""-H ** 3

j ** 2
K **2
L ** * * - * 0

S"** * * - * 0

Cell Size - 21
i - =Border Lino Slqnificonce at . 05

• Significant Diffcrcnce at .,05
-A- - iiq~ficant Dzifocnce at a. .01
S~399



TABLE 5

Significant Differences in Detection Between Visual Cues Averaged Across
Camouflage Levels, Film Type - B&W Plus X.

A B C D E F G H I J K L M Frequency
A 16
B * 7

C * 6
D ** 4
E ** 2
F ** 2
G ** 3
H ** 5

I II ** - 1

K * 2
L ** - I
M ** ** ** 0

Cell Size = 21
- = Border Line Significance at a = .05
* - Significant Difference at = - .05

•* - Significant Difference at = .01

TABLE 6

Significant Differences in Detection Between Visual Cues Averaged Across
Camouflage Levels, Film Type - Color.

A B C D E F G H I J K L M Frequency
A 13
B 9
C 7
D 7
E ** 4
F ** 3
G ** 4
H ** ** ** **0
I * S

S** * 2
K ** ** - - 1
L ** ** ** ** 0
M ** ** - -. I

Cell Size = 21
- = Border Line Significance at o = .05
• =Significant Diffcrmce at a= .05

• * Signicant Difforence at a= .01
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TABLE 7

Significant Difference in Detection Between Visual Cues Averaged Across
Camouflage Levels, Film Type - Color IR.

A B C D E F G H I 1 K L M Frequency
A 12
B 6
C 8
D 8
E r ~5"

H 3

I ** 2
J ** 3
K** 2
L 2
M** * ** ** - . 0

Cell Size - 21
Border Line Significance at a.05

, - Significant Difference at a - .05
** Significant Difference at a - .01

Tables 8 through 14 contain the 12 visual cues which contributed to site

identification averaged across different combinations of'camouflage and

film type. Cue frequency and significance at a - .05 are again included

as in the preceding tables. As before, the cues cannot ba identified

because of security classification.
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r ' TABLE 8

Significant Differences in Identification Between Visual Cues Averaged
Across All Levela of Camouflage and Film Types.

A B C D E F G H I J K L Frequency
A 42
B ** 25
E **

E ** ** 8
F ** **8

G ** ** 8
H ** ** * * 4

, ** ** ** ** 2
J ** ** ** ** 2
K ** ** ** ** * * * I
L ** ** ** ** * * * 1

Cell Size = 59
* = Significant Difference at a = .05 •

•**- Significant Difference at a - .01

TABLE 9

Significant Differences in Identification Between Visual Cues Averaged

Across Film Types,, Uncarnouflaged Level.

SA B C D E F G H I 1 K L Frequency,
A 17

!B ** 8
C ** 2

SD ** 7
SE ** 5

F ** 6
G ** 4
H ** 2

I ** * * 1

K ** ** ** * * 0
L ** ** ** * * 0

Cell Size = 17
• = Significant Difference at a - .05

• Significant Difference at a = .01
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TABLE 10o

Significant Differences in Identification Between Visual Cues Averaged
Across Film Types, Tone-Down Plum Decoy Level.

A B C t r r G ii J K L Frequency
A 12
B 6
C 7
D * 4
E ** 2
F ** * 1

G ** 2
11 ** * 1 *1
I ** * ** 0;
J ** * 1
K ** * 1

L ** * ** 0

Cell Size = 17
* = Slqnificant Difference at = = .05

• *= SiqnJflcont Difference at = = .01

TABLE 11

Significant Differences in Identification Between Visual Cues Averaged
Across Film Types, Full Camouflage Level.

A R C( D E F G H I I K L Frequency
A 13
13 11
C * 6
D ** ** 2

E ** ** 1
r' ** ** I
o ** ** 2
1.1I ** ** I

i I ** ** 1
{ I **. ** *0

1 0
K ** ** * 0

J' • L ** ** 1
JL

CCoil Size-c 17
• = Sicnificant Diff,:rence at a = .05

S **. Significant Miffere:nco at a = .01
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TAIBE 12

Significant Differences in Identification Between Visual Cues Averaged
Across Camouflage Levels, Film Type - B&W Plus X.

A B C D E r G I J K L Frequency
A
B * 8
C ** 2
D *4
E ** 3
F ** 3
G ** *I 1
H ** 2

I ** ** 0
* ** ** 0
*K ** ** 0

L ** ** 0

* Cell Size = 17
* • = Significant Difference at a -_ .05

• *Significan o feecen t (IL ,01

TABLE 13

Significant Differences In Identificaition Between Visual Cuss Averaqed
* Across Camouflage Levels, Film Type - Color.

A B C D E I' G 11 I I K L Frequency
SA 10
B I0

* C 4
D 5~
ET* E 2
Across * * 3
E * 2

11I ** ** I
S !I ** 4. 1

S ! ** ** 1
i •K ** ** I

.,L ~ *I

k Celi Size ::17i ~ * = Significant Diffe~rence at c =.0

* I ** Slgnificiaiit Tiffprrence 1ot a .01
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TABLE 14

Significant Differences in Identification Between Visual Cues Averaged
Across Camouflage Levels, Film Typo - Color IR.

A B C D E F G H I X K L Frequency
A 17
B 7
C *9

4
E 3
F ** * 2

G**5 jl
H ** * ** I
I ** * ** 1
7 ** * ** 1

K ** ** ** * 0
L 0 ** ** 0 d

Cell Size - 17
* - Significont Difference at a = .05
** Significant Difference at a = .01

405



IV. DISCUSSION.

A review of tables 1-7 demonstrates that the isolation of the critical

visual cues for site detection was accomplished by the use of "minimum

contrasts," Detection cue A was a significant factor in all tables for the

detection of the SAM site. There was virtually no change in the importance

of this cue in site detection when analyzed across levels of camouflage

and film type. Therefore,more effort must be expended to prevent this cue

from becoming a major factor in target detection. The addition of the decoy

site adjacent to the SAM site had a pronounced effect in Increasing the

number of significant cues that allowedl the image interpreter to detect the

site (table 3). Visual cues E and F, and H through M did not have much

effect on site detection either for level of camouflage )r type of film analyzed.

The number of cues leading to site detection was greater for the color and

color infrared film than for the black and white film (tables 5-7). As is well

known, more information is presented to the Image interpreter on color and

color infrared film than on black and white imagery.

Tables 8-14 indicate that the use of "minimum contrasts" to isolate

the critical visual cues in the identifiotion of the SAM site was successful.

Visual cues important for site identification were different from those for site

detection. Identification cues A and B were the most important except for

camouflage level two containing tone-down and site decoy. For this
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case, cues A and C were the most prominent in site identification (table 10).

The effects of visual cue C were essentially nil for levels one and three

(Tables 9 and 11). Visual cues D through L had little effect on site identi-

fication when analyzed by level of camouflage or type of film. Color infrared

film generated more visual cues to target identification (Table 14 than both

* color and black and white films (Tables 12-13). We consider this to be
'! I

due to the greater amount of information presented to the image interpreter

.* with color infrared film than for the other two film types. The results

indicated that this approach was a valid method to objectively analyze

subjective cues.

V. SUMMARY AND CONCLUSIONS.

The problem faced in this study was to objectively analyze the effects

of levels of caimnuflage on detection and identification. A SAM site was

selected and photographed, Subjective visual cues were elicited from

operational image interpreters in response to specially prepared classified

packets of site photography. These cues for both detection and identifi-

cation were grouped into categories and analyzed for significance using the

technique of "minimum contrasts" . This technique facilitated the

quantification of the subjective cues used by image interpreters in site

detection/identification for levels of camouflage and types of photographic

film.
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A SIMPLE METHOD FOR DETERMINING THE
UNRESTRICTED AVERAGE OUTGOING QUALITY

LIMIT (UAOQL) OF A CONTINUOUS SAMPLING PLAN

Richard M. Brugger
RAM Assessment Division

Product Assurance Directorate
US Army Armament Cormand

Rock Island, Illinois i!
ABSTRACT. This paper provides a simple algorithm for

determ-inintEhe Unrestricted Average Outgoing Quality
Limit (UAOOL) of a continuous sampling plan. The deriva-tion of the algorithm is shown.

I*1 INTRODUCTION. As a prerequisite to a discussion
of the UAO#L some review of the fundamentals of continu-
ous sampling is in order. :!

Most statisticians are familiar with the concept of !
sampling from a lot. For example, we might have a lot of
one hundred items, from which a sample of size seven has
been drawn. The acceptance decision for the lot will be
based on the results found in the sample. For example,
the rules of the sampling plan we are using might say that
if two or fewer units out of the sample of size seven are
defective, we shall accept the lot. If three or more units
are defective, we shall reject the lot.

Under continuous sampling, we do not use the concept
of sampling a certain number of units from a lot of material.
Instead, we carry out inspection as the units are produced
and flowing along the production line.

The prerequisites for using a continuous sampling plan

area

a. Moving product.

b. Ample physical facilities for 100% inspection when
necessary.

c. Relative ease of inspection

d. A process capable of producing homogeneous material.

409



An example of a continuous sampling plan is Harold
Dodge's CSP"- [2). Dodge was the original developer of
continuous sampling plans, and published his first work
on the subject in 1943. Under CSP-l, at the start of
inspection, the screening crew inspects 100% of the units.
When some prespecified number, ±, of consecutive units are
free of the defects concerned, that is, the defects for
which we are inspecting, the screening crew is released
from 100% inspection and the sampling inspector inspects
a prespecified fraction, f, of the units, where the sample
units are selected in a random manner as they pass the
point of inspection. If a defective unit is found, 100%
inspection is resumed, and the cycle repeats itself as
necessary during the remainder of production.

We made mention of the values of i and f, which are
specified for each individual CSP-I plan. For example,
we might have a clearance number, i, of twenty units, and
a sampling frequency, f, of one in ten.

Some of the functional properties of a CSP-l plan
(or any CSP plan for that matter) that are usually of
interest to the statistician are the following:

a. The Average Fraction Inspected, of AFI, which is

the expected value o the fraction of material that will
be inspected over an indefinitely long period of time when
each unit has probability p of being defective.

b. The Average Outgoing Quality, or AOQ, which is
the expected fraction of materal a t is defective in
accepted material over an indefinitely long period of time
"when each unit has probability p of being defective.

c. The Average Outgoing Quality Limit, or AOQL,
which is the maximum value oAOQ.

Thus far, we are talking about properties based on
the assumption that each unit has probability p of being
defective. This is of course a very restrictive assump-
tion, since one might intuitively feel that in the real
life situation, p would undergo some sort of variation
over time. For this reason, statisticians concerned them-
selves with the problem of how to describe the mathematical
properties of continuous sampling plans when p varied over

* time. In 1953, Lieberman (4] presented an analysis of
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CSP-l under the assumption that p was not constant for each
unit. He determined that the worst situation would be the '
one where only good units reached the inspector during
phases of 100% inspection, and only bad units reached the
inspector during phases of sampling inspection.

The outgoing quality reflected by this worst possible
situation eventually came to be called the Unrestricted
Average Outgoing Quality Limit, or UAOQL. There is a very
interesting paper on the UAOQL by Sackrowitz (5) in the
April 1975 Journal of Quality Technology; however,
Sackrowitz's defini tons are somewha fferent from what
we will discuss here.

There are two general cases that we will considert
that situation where defective units found are removed from
the flow of product and replaced with good units, and the V
situation where defective units found are removed from the
flow of product but are not replaced with good units.

For the replacement case, White [6] carried out a
quite complex derivation involving linear programming to
show that for a broad class of plans, the UAOQL would re-
sult from that situation where for any phase of inspection
of a plan, either all good units are submitted during every
occurrence of the phase or all bad units are submitted
during every occurrence of the phase. White (71 computed
numerical solutions for plans from DOD Handbook H106.
Endres [3], an employee of mine at the time, showed that
this rule would apply also in the case where defective units
were removed from the flow of product, but were not replaced
with qoot units.

2. DISCUSSION. With the difficult mathematical proofs
thus out of Me way, the possibility of developing a simple
algorithm presented itself [1]. The phases of inspection
could be treated as states in a Markov chain. Remember that
the UAOOL will result from a situation where for every occur-
rence of each phase, either only all nondefectives are sub-
mitted for inspection, or only all defectives are submitted
for inspection.
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Let us define configurations to be the values of

where

k w number of states

• (•) - 0 if during occurrences of the phase represented
by state j only nondefectives are submitted for I
inspection. $

S(:j) - 1 if durinq occurrences of the phase represented
by state j only defectives are subnitted for
inspection.

It is clear that for gny plan of the type we are considering#
then# there will be21 configurations. For even moderate
simed values of k, the problem could be difficult if we had
to consider every configuration. Fortunately, we can make
the problem smaller.

Let us first go through the case where defective units are "
removed and replaced with good units. I

Theorem 1: If a configuration exists such that for any
state j

(i) (•() a 0, and

(ii) State j is an absorbing barrier,

then this configuration need not be considered in deter-
mining the UAOQL.

Proofs Under the conditions stated in the theorem, the
Tons run outgoing quality would be zero.

Theorem 2: If a configuration exists such that for any
state j

(i) *(i) - 1, and

(ii) State j is an absorbing barrier,

then this configuration need not be considered in deter-
mining the UAOOL.

412
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Proof i Under the conditions stated in the theorem, the
Tong run outgoing quality would be zero.

We thus see that all configurations involving absorbing
barriers can be disregarded.

Consider CSP-1. Let state 1 be the 1000 inspection state
and state 2 be the sampling state. We have the following
configurations s

Y *(0 0)

y -(0, 1)
2

Y3 (i, 0)
Y4 (1, 1)

Configurations with (1) - 1 or *(2) - 0 can be disregarded,
since these would represent absorbing barrier situations.
Therefore yl, Y3, and Y4 can be disregarded. The remaining
configuration, Y2' represents the situation under which theUAOQL occursi no defective units are submitted during periods
of 100% inspection# only defective units are submitted duringperiods of sampling inspection.

Let us now define another term.

A sequence of states which repeats itself indefinitely under
the conditions imposed shall be called a cycle. For example,
if a Markov chain consists of four states, and if a configura-
tion results in a sequence of states (1, 2, 3, 4, 3, 4, 3,
4 ... ), then (3, 4) is a cycle.

Theorem 3t The long run outgoing quality for a configura-
tlon In ving cycles is equal to the average number of
defectives passed in a cycle divided by the average number
of units passed in a cycle.

Prooft The long run outgoing quality is

m

lim i-l defective. passed in cycle i
m"- m

E
i-l units passed in cycle i
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lha m(AVERAGE NUMBER OF DEFECTIVES PASSED IN A CYCLE)
M-eu m(AV]R&GE NUMBER OW UNMT2 PASSED IN A CYCLE)

AVERAGE NUMBER OF DEFECTIVES PASSED IN A CYCLE
AVERAGE NUMBER OF UNITS PAFSED IN A CYCLE

Considering COP-1 again, it has been shown that only configura-
tion Y2 = (0, 1) need be considered. Since the sequence of
states (1, 2. 1, 2, ... ) occurs, we may refer to (1, 2) as
a cycle. Using Theorem 3# we may then say that

AVERAGE NUMBER OF DEFEC- + AVERAGE NUMBER OF DEFEC-

UA''L = TIVES PASSED DURING 100 + TIVE8 PASSED DURING SAMPLING
O-~ AVERAGE NUMBER OF NITS AVERAGE NUMER ONF UNITS

PASSED DURING 100% + PASSED DURING SAMPLING

" 0 + 1--it-0++
S+

where i is the length of 100 inspection and f is the
sampling frequency. Let us now consider the case where
defective units found are removed but not replaced with
good units.

Theorem l's If a configuration exists such that for any
state j

Mi) 40() - O, and

(ii) State j is an absorbing barrier,

then this configuration need not be considered in determining
the UAO0L.

Proof: Under the conditions stated in the theorem, the
long run outgoing quality would be zero.

Ile see that this is the same as Theorem 1 for the replace-
ment case.

Theorem 2's If a configuration exiets such that for state
1 (corresponding to the first phase encountered
in using the sampling plan)

Mi) 0(l) - 1, and

(ii) State 1 is an absorbing barrier,

Then this configuration need not be considered in deter-
mining the UAOQL.
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Proof: Under the conditions stated in the theorem, no
pro•ulct would be passed at all, hence, outgoing quality would ..

not be defineable.

Theorem 3's If the number of units passed in a cycle is
greater than zero, then the long run outgoing
quality for a configuration is equal to the
average number of defectives passed in a cycle
"divided by the average number of units passed
in a cycle.

Proofs Same as Theorem 3 for the replacement case.

Theorem 4': If a cycle passes zero units, it is only neces-
sary, in determining the long run outgoing
quality, to consider those states, if any,
which occur before cycling begins.

Proofs The fraction defective of material passed by the
In-pection system would remain unchanged once cycling begins,
since no more units would be passed. This theorem is useful .7
when a 100% inspection state other than state 1 is an
absorbing barrier.

An an example, let us consider the simple case of CPS-I
again under the nonreplacement assumption. We have the
configurations

YI - (0, 0)

-Y2 " (0, 1)

y-(11,0); ~Y3 "=I#0

Y4 (, 1)

Configurations with 4(1) - 1 or J(2) 0 can again be din-regarded, since thead would represent absorbing barrier
situations with no defective units passing. Again Y2 -
(0, 1) is the only configuration that need be considered.
In the replacement case, then,

AVERAGE NUMBER OF DEFEC- + AVERAGE NUMBER OF DEFEC-
TIVES PASSED DURING 100% TIVES PASSED DURING SAMPLING

UAOQL AVERAGE NUMBER OF UNITS + AVERAGE NUMBER OF UNITS
PASSED DURING 100% PASSED DURING SAMPLING
0 + (@-i 1) 1-f

1 - =l) 4=
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In our examples# we have used the simplest case, CSP-l.
However, in practice, we have found that we can use this
method for plans of some complexity in order to determine
the UAOQL for either the replacement or the nonreplacement
case,
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SEMI IARKOV CHAINS APPLIED TO MARIOV CHAIN
FUNCTIONALS PARTIALLY DEPENDENT ON

RANDOM BACKWARD TIME SHIFrTS

F David L. Arp
Naval Weapons Center* F China Lake, California

ABSTRACT. Given a Markov Chain (MC) model for a particular Continuous
Sampling Plan (CSP), a method of restructuring its states into a simpler
Semi Markov Chain (SMC) pattern is used to analyze MC functionals which
are partially defined by random backward shifts in operational time.

Specifically, the usual MC model, for the Job Shop case of CSP-1,
initially starts with an inspection phase of I states and thereafter cycli-
cally alternates between it and a sampling phase. However, whenever sampling
is terminated, this plan it modified by the additional requirement of apln
(limited) Downstream Inspection (DSI) of the previous I units followed by a
phase transition determined by the outcome of such an inspection. For a pro-
duction run of length N, this modification induces a corresponding one in the
expected value of the associated basic functional: Fractio- Inspected [FI(N;1)].
Both modifications are handled here by 1.) slightly changing the usual SMC
reduction and 2.) coupling this change with a new functional: Incremented
Fraction Inspected CIFI(N;2)]. The expected value of the functional Total
Fraction Inspected (TFI(N;2)] is then expressed as the expected value of the
sum of two terms: the new functional and the (unmodified) functional, FI(N;2),
defined on the altered SMC. In addition to comparing the long run expressions
for TFI and AFI, a comparison is also made between TFI and the expression which
results from the more familiar requirement of (limited) Upstream Inspection
(USI).

In analyzing the above situation for finite N, two interpretations of
DSI are subsequently studied. The first, based on possible inspection or
manufacturing irregularities in both phases, is the scheme already referred
to above. The second, based only on the putative assumption of sampling phase
irregularities, is a less strict version. For N infinite, a comparisot. is made
between the expected values of the two TFI's.

Since, in either of the two plans, TFI does not explicitly take account
of multiple inspections of the same unit, other measures of plan performance
are considered which do. To this end, the paper concludes with a study of the
functional Fraction of Repetitions (FR), its first moment, and a variant func-
tional. In order to deal with this functional, further modifications in the SMC
model for CSP-l are necessary.
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1.0 BACKGROUND.

1.1 Introduction. The principal subject of this paper is the study of
variations in one member of a class of sampling plans and functionals de-
fined on these variations. The class referred to is that of certain
Continuous Sampling Plans (CSP) which are treated as finite state, irre-
ducible, time homogeneous. and aperiodic Markov Chains ('IC). The element
referred to. classically denoted by CSP-l, is the simplest element of this
class. In dealing with these MC models, four different kinds of standard
groupings, called phases, of their states ern he distinguished: screening
(ac), unlimited sampling (uls), limited sampling (is), and checking (ck).
Using the terminology of phases, a given CSP can then be defined as a
collection of two or more different phases (normally, one of which is ac)
which are linked together in accordance with sampling frequency criteria.
Throughout the bulk of the paper, only the two canonical phases making up
CSP-1 will be considered; interest will be especially focusid on structural
changes in uls which are brought about by Downstream Inspection (DSI), At
the and of Chapter 3, the checking phase will also be briefly considered
since it can be regarded as Upstream Inspection (USI).

CSP-1 and the major variation in it, brought about by DSI, are portrayed
In Figure 1.

Figure 1

CSP.,1 and DSI

if defect is

V found

Iconsecutive)spe
inpc Sapl deets
1002 units defect free ~f- f

no defects
I found

onLe or more inpct£if defect
_r-- one or - ore previous units -

defects found 100% is found

418



In Figure 1, CSP-1 consists of the top two boxes connected together

with the solid lines. The D8I plan, denoted by CSP-12, is obtained from
CSP-l by replacing the top solid line by the dotted ones and adding the
lover box. Two approaches will be used to handle this change.

The first approach, given in Chapters 2 and 3, consists in counting
only the extra unite inspected without regard to any inspection repetitions
due to DSI. In the second approach, given in Chapter 4, all units inspected
are also counted, but now including repetitions. Both approaches use, as
the main tool, Semi Markov Chain (SMC) reduction of MC models which is now
briefly described.

In describing SPC reduction, the term macrostate will be used to refer
to an ensemble of MC states which is structured as a (discrete) SMC state
(e.g., a canonical phase of a CSP). To be a macrostate, an ensemble must
satisfy two conditions. 1.) The MC probability of entrance vector (pev)
into the ensemble, given that such an entrance occurs, must be stationary
and independent of the state from which the entrance is made. In other
words, letting the ensemble S be composed of the k MC states, J, 1 S j s k,
we impose the condition that, for an arbitrary time n,

v(n) -v

where

v(n) - (vi(n). V2(n), --- , vk(n))

vj(n) - P[M(n) - JIM(n) in S, M(n-1) not in S)

and

M(.) is the MC process.

2.) Subject to the restrictions of 1.) for a given target macrostate, an
exit can occur from a MC state of the ensemble into a MC state of the
macrostate only if the first state communicates with the second in the
underlying MC. To avoid a circular construction, we finally note that
any MC state is, itself, a (trivial) macrostate.

Two different, but equivalent, methods can be used to construct such
macrostates from MC states: the MC method, which is pedestrian, but straight-
forward, and the SMC method, which is more subtle but nearer to the general
idea of SMC reduction. Under either method, MC functionals induce well defined
SMC ones and the MC properties of time homogeneity, irreducibility, and
aperiodicity are preserved [cf., 6.2 and 6.81.
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In the NC method, the component states of a given macrostate and
the possible exit macrostates are the transient states and the absorbing
states, respectively, of an absorbing NC which is derived from a parti-
tioning of the original NC. The possibly defective probability density
function (pdf) of a transition of the macrostate to any one of the target
macrostates is then just the weighted asm of the first entry probability
functions, each weighed by the component in the stationary pay. In the
more constructive SMC method, a given parent macrostate is considered to
be made up of two or more smaller macrostates (including a MC state with
or without self transitions). To such a division, the IMC method" is
applied, only now to an absorbing SMC. The derived system of Backward I
Equations (see A.21), or, in simpler situations, direct combinatorial
analysis is then applied to obtain the resulting first entry SHC probabil-
ity functions. Their weighted sun, again weighed by components of the
(induced) stationary pev, yields the pdf of the parent macrostate (to some
one target macrostate). This latter method is easier to use and intuitively
more appealing; it will be used almost exclusively throughout this paper
except for a simple example of the MC method given at the end of Chapter 1#
Furthermore, the SMC method, at any stage in its use, emphasizes the concepts
1.) of constructing from a given MC a class of SIC's which is partially
ordered by filtration [6.2 and 6.73 and 2.) of using different elements of
this class to attack either different problems or different stages of one
problem which arise from the original MC.

Neither of these two methods should be confused with the process of
lumping as it is defined in [6.131. In fact, for CSP's, it is not possible
to lump the states in each phase, in the above sense, into a newi MC state.
A more thorough presentation of SMC reduction, with many applications, can
be found in [6.21. What notation, definitions, and theorems concerning SMC's
that are needed in this paper are taken from this reference and can be found
in the Appendix. A more heuristic approach to SMC reduction (for the
stationary case) together with further applications can be found in (6.4,
6.5, and 6.63 where it is called The Simplified Markov Chain Method.

In siummary, the MC method can be stated as follows. Given the compo-
nents, vj, of the pev and the MC first entrance probability function

n
* ~fj ,A

from j to a target macrostate (absorbing state) A, the equation for the pdf
from S to A is (see Appendix for notation)

* k

QSA(n) L vjf ',A (Al)
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Similarly. the SMC method leads to the sane form for the RHS of Eq. Al
in which the f's are replaced by OWC first entrance probability functions.

Another ubiquitous tool, used in concert with SMC reduction, is the

s-transform. The transform is applied here to probability sequences
rather than to the transitional matrices themselves. This approach is
taken because, in practical applications, the ranks of the matrices are
quite large (about 3 x 102 and greater). Thus the ranks of the complex
functional matrices, obtained via the transform, would be so large that
1.) important relationships would be obscured and 2.) an analysis of them
would be almost as difficult as that done without the transform. The
salient features of the transform can be found in [6.3 and 6.12]. We re-
cord here only some basic notation that will be used with sequences treated
as functions from the natural numbers to the reals. Given a sequence a(n),
i(z) is its s-transform. Given sequences a(n) and b(n), a*b(n) is their
convolution. dn(k) denotes the (Dirac) sequence which is one for the
argument equal to n and zero otherwise; an(s) - I /sn. Hn(k) denotes the
(Heaviside) sequence which is one for tho argument greater than or equal
to n and zero otherwise; ftn(z) - C./zn)(u/(z-l)).

1.2 SMC(1) and FI(N;1). The basic premise used in modelling a CSP is
that the underlying production process is a Bernoulli process with a con-
stant probability of defective p (and probability of non-defective q - l-p).
In particular, the MC structure of CSP-1, which is fully described in [6.1,
6.2, and 6.41, arises from the sequential sampling scheme imposed on the
above process with an operational time defined by the flow of non-repeating
production units. The SMC model of CSP-1, derived from the NC model, is
given in Figure 2 and is denoted by SMC(l).

Figure 2

SMC Model of CSP-l (SMC(1))

9 -

9 42
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For the model in Figure 2, I clearance number for sc, f sampling
frequency for uls, p - probability of defective, q a l-p, and we have the
following statements expressed in

Theorem 1. Let se = 1 and uls - 2, Then, SMC(l) is an irreducible
SMC.

Proof. The SMC states are

(1; 412()) and(2; Q2 1(z)),

where

012 W a (1.1) 424

In Eqs. 1.1, #(z) - zl(z-1) + -,y - pqI, 8 . fp, and 0 - 1-6.

Thf. transitional matrix of the embedded MC is
1 2 l

1 01 1

I 2 L 0~

Even though it clearly has period 2, the SMC is none-the-leas aperiodic
[6.2 and 6.8]. It easily follows from the matrix that e - (1/2, 1/2) isthe stationary (but not long run) vector.

Using the notation in the Appendix (see A.25),

U1 "lqI and 02 1 1
pqI fp

The last two statements and A.25 imply

P ;) - 1  and P 2 (- ;M) -

U11+ 12 1.+ U2
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Further details are found in [6,23 which finishes the proof.

The expressions (l-q t)/pqI and 1/fp, in Theorem 1, appear throughout
the paper and will hereafter be abbreviated by the symbols p, and 0 , I
respectively. These special primed symbols are used to avoid confusion
with standard notation (see A.25) and, at the same time, to serve as a
reminder of their origin (is, CSP-1).

The principal measure of plan performouce for CSP-l is the Fraction
Inspected (FI) functional which is $ivan in

Definition 1. Por a production run of length N and sampling plan CSP-1,

N
FI(N;l) 1 j - C2 (j)

J-0

where C2 (.) is the characteristic function for state 2 - uls and v - 1-f.

Taking the expected value of the above functional, conditioned by an
initial start in sm (Job Shop case), letting N approach infinity, and using
the Ergodic Theorem, we have [6.1 and 6.21

AFI(@*;l) - 1-vP2(-;l) (A2)

where the LHS of Eq. A2 is defined by

Lim £sc,[1I(N;l).

1.3 MC Method (An Example). The MC method will be briefly illustrated by
applying it to the MC model of uls. This model consists of two MC states:
SN, the non-inspection state and SI, the inspection state. The transitional
matrix of the absorbing MC, derived from the MC model of any CSP having a uls
phase, is

SN SI A

SN v f 0

S1 v qf p
A 0 0 1423-
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where A is the only possible target phase to be entered, The pev for the :
ordered ensemble S (SN, SI) is y u (vf) which induces an initial pro.-
bability vector (v,f,0) for the states (SN, SI, A), where A is the absorbing
state, the other two being transient, Thus, from Eq. Al, we read to derive
the expression

(v)fsA + ( A fglA

From the Chapman-Kolmogorov equation, a difference equation for the first
entry probability functions can be derived. a-Transforming this difference
equation, we obtain

4~uls,AO)-5/z~

where 6 fp and 0 1-6.

In a similar manner, & c A(Z) can be derived using an (I+1) x (1+1) I
trensitional matrix consisting of I transient and one absorbing states
[6.2). Also, for this latter function, see (6.10, Chp. 13] for a differ-.
ent derivation which is based on renewal theory and Bernoulli trials.

1.4 Notation and Terminology. Three essentially different plans will be
studied in future chapters. They are denoted by CSP-12, CSP-13, and

CSP-14. For ea*s in indexing functional*, CSP-l will henceforth be denoted
by CSP-11. SMC models associated with the above plans will be denoted by
SMC(k), k a positive integer; in one case, a Markov Renewal Process (MRP)
model in constructed for CSP-12 and is denoted by MRP(2). A MC state with-
out self transitions will be called a trivial SMC state; one with self
transitions will sometimes be considered as a (non-trivial) SMC state with
a geometrically distributed holding time. A (functional] will usually mean
Eac (functional) for the models considered. In particular, with respect
to some other set of models, A [.] could have an entirely different defini-
tion. Theorems, propositions, and definitions are numbered consecutively
throughout the paper. Statement y of section x in the Appendix will be
denoted by A.xy.

1.5 Acknowledgements. I would like to give -redit to Mr. Richard M.
Brugger who formulated the DSI concept and applied it, as a temporary
measure, to tighten quality assurance in CSP-11 under practical shop condi-

*+ tions. This intriguing idea - inspecting against the natural flow of
operational time - was originally communicated to the author by Mr. Gary
Aasheim, an associate of Mr. Brugger. In closing this chapter, I would like
to express my graditude to Leah K. Jones for the excellent typing of and
editorial assistance on a fairly difficult subject.
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1,6 Principal Results. For the quantities referenced below, 8 - fps
0 a 1-6. and v - 1-f.

Sq. A2 gives API (-;1) ; P2 (*; 1), -;11 and jt2 are given In Theorem 1.

Eq. B8 lives ATFI(w;2); P2(-;2) is given in Theorem 4 and TFI is
defined in Definition 2.

Eq. CS gives ATFI(m;3); P2 (*;3) is given by Eq. C7.

Theorems 17 and 20 dive AFR(;2); Theorem 18 gives AFR'(-;2).

Theorem 7 compares ATFI(-;2) and AFI(-;l); Theorem 14 compares
ATFI(nj2) and ATFI(*;3).

2.0 DSI - GENERAL. Having initially started in the screening phase
(Job Shop case), if a defect is found in the sampling phase at time n,
n > I, Downstream Inspection (DSI) requires 1.) a return to unit n-I with

OX inspection of the succeeding I units and 2.) entrance to the sampling
phase (screening phase) if no (one or more) defects are found upon com-
pletion of 1.). DSI is portrayed in Figure 1, Chaptqr 1.

2.1 Introduction. If the DSI stage is, for the moments intuitively
looked on as a "pneudophase", the Total Fraction Inspected (TFI) can be
obtained by treating it as a modification of FI(N;1). Conceptually, this
modification can be broken down into two separate parts. The first is an
additive fractional increase due to a sum each term of which, after
multiplication by N, is equal to v min(kI) where k+l is the duration of
the corresponding sampling phase segment. The second is a nonlinear de-
crease in FI(N;l) due to the transitional requiremtnts that L0Me into force
upon leaving the "pseudophase". The decrease occurs because, upon finding
a defect, there is a chance of immediate (at least in the sense of opera-
tional time) return to the sampling phase rather than an automatic entrance
to the screening phase which would otherwise take place in CSP-11. The
finite probability of this immediate return results in a fractional increase
in units not inspected and, therefore, a corresponding fractional decrease
in units inspected.

These remarks lead to the following proposed solution. The nonlinear
decrease can be dealt with by weaving the transitional requirements of the
"pseudophase" into the SMC structure of CSP-11 thereby yielding a new SMC
and its Fraction Inspected function, FI(N;2). The additive increase can then
be easily handled by coupling a new Incremented Fraction Inspected functional,
IFI(N;2), to FI(N;2). Adding these two functionals, we finally have
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DL.di tion T The TaL Uractiop bmag o is gIven by

M T(N;2) - 10(112) + 171r(N2).
Zn this chapter, ATFI(,;2) is found and compared with AIFI(o;h),

h ,4. In Chapter 4, other functional* and SWl models are studied
since the one considered hare and Itti transient version, treated iu
Chapter 3, are not complete measures cf plan performance.

2.2 IRP(2) and IFI(M-2), V. ATFI(-;2), the solution proposed in the
I introduction suggests a me4,-,. for C8P-12 given in Figure 3 and denoted by
.W1 (2). This model to a karkov Renewal Process whose definition is liven
in A.19 (also aee A.28).

• Figure 3

Model for C8P-12 (OP(2))

Concerning the model in Figure 3. we have

Theorem 2. WRP(2) is a HRP. Letting ac B 1 and s = 2, the states
are

•"(1022(s)) and(2;021(2), 022(2))

where

4 "2(s) ( (2.1)

Q21(') *(2.2)

and

022(g) (2.3)
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Proof, 1q, 2.1 follow from the model for CSP-ll. Eqs. 2.2 and
2.3 follow from the model for CSP-11 and the introductory remarks to
Chapter 2 since, upon completion of a DSI segment, the sampling phase(seroenIng phase) Is entered with probability q1 (probability l-qI)
with operational time playing no role, MRP(2) is a ?RP by definition.

The definition of FI(Nj2) is of the same form as that given for
F•(X;l) in Definition 1. We now define the incremental functional in

Definition 4. Let W(.) be the following functional:

t

WW - R* + (l-C 2 (t))R

where t - N2 (t)-l and Re a min(k,I) if the gth exit from state 2 takes !
place (k+l) time units from the sth entrance. Then the Incremented Fraction

*noLed functional for MIP(2) is

IFT(t;2) v W(t)
t

where
Vm * -f.

Filtering out state 1 from MPP(2), we obtain the pdf of the renewal
time for an occurrence of state 2 which is given by

Q'22(t) -Q 21*Q12(t) + Q22(t).

Thus, averaging the time over one renewal cycle, we have

E[T] - kP[T2 1 + T12 - k or T2 2 -k

k-1

- k Q 2 (k)

k
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k Q21*Q12(k) + k Q2 2(k).
k k

From the mesn value property of the a-trasform, we must evaluate

-sD(Isal'Q12 ) and .-"D(4 22 )

at z a 1. Calling the results of the evaluation a, and m2, respectively,
ve have

mlm (' + p)and m2 -

where
he 6(1-q 1 ).

Proposition 1.

ECTI - (V-q2)i'Z + I'" (Bl)

Proof. See above.

Averaging W(.) over one cycle yields

E[W] kP[W-kl

k-1

m • kpk + • ,I+l+j

Wk + 1
k J=O

805D0 (..1) + 0iI+l.
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Since
SD~ (L . - ..L (1..8I+1 - 8(i+1)8i),

substituting the iNS of this equation for the RES above and simplifying,
we have

Proposition 2.

•1(W] (- (32)

Proof. From above.

We are now ready to prove

Theorem 3. For )2P(2),

111(-;2) -. + v' '

Proof. By the Strong Renewal Theorem [6.7, 6.9], we have

Lim W(N) . I [I ae.].
N• XN BI[T]'

The theorem follows from this result, Props. 1 and 2, Def. 3, and

simplification.

Corollary. J

\((4qL) V, + 4

Proof.

Lim Esc[W(N)]AIFI(m;2) - N- N
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* ~2.3 SMc(2) and lI(:0), By its very definition the functional U(-)
depends on the sample paths of a MRP, including the self-transitions of
a component state. In particular, the fundamental probability functions
(see A.12) of the Induced SMC (see A.28) are not sufficient to describe

* W since they don't record the self transitions of ̀ Ms, However, just ae
* HiP(2) Induces a unique SMC(2), W also induces a correspondingly unique

functional, W*(-), defined on the chain. We first prove

Theorem 4. MRP(2) induces a unique SMC, denoted by SMC(2).

Proof. From A.28, SMC(2) can be defined via its pdfl. as follows

4*12(Z) 4 12(X) (4.1)

and

Q21 022 }Q21
J -0

0 21/(l1Q22)

6 (4.2)

* ~Recalling the definitions of ola and P12 from Theorem 1, we have, from
the derivitiveu of Eqs. 4.1 and 4.2,

U11 u%1' and 112 =

where
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From A.25, we thus obtain 4
-q4

P (•;2) a (l'qI.)' 1  and P (a;2) n . (B3)
(l-q1 l)p +t (l-qt)i,' 1 + JA•

where 1 and 2 on the LKS's are sc and Tu-s*, respectively.

The transitional matrix and stationary vector of SMC(2) arc the :
same as in Theorem 1 which finishes the proof. ji

Our goals now are to find E[W*] and E[T*]. To this end, we prove

Theorem 5. The functional W(-) induces a well defined functional,
W*(.), on SMC(2).

Proof. W* is implicitly defined through the following equations.
Conditioning on the number of self transitions, J, of `Ms, we have

PIW*-k] - Ž P[W*-klj]P[j]

-~ aj(k)

where

aj (k) = P[W*=k and j repetitions].

Noting that a (k) can be defined in terms of as(k), s < J, we can derive
a set of equalions relating the above a's. For ease in notation, we first
define

1-1

j~z~z.ar •-0
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Then, for 0 :1 k S (J+1.)1, k a flied integer, we obtain the systsm given
below.

a (k) - (6ql)ajl,*B(k) + (Bq)Iaj(k-I) (5,1)

where

I sk IJI,

- (8q')ajl,*B(k) (5.2)

where
O ks<k <1,

* (6qI) (1k--iI)aj..(jI) (5.3)

where

JI < k < (J+l), and

- (Oql)aj(.ii) (5.4)

where

k - (j+1)I.

From Eq. 5.1, we have

jz - + (B) aj_.,j(kI)
Z• Zk

k-I

, - + Y(5.5)
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Adding zero on the RIB of Eq. 5.5 and changing indiesi in the term Y,
we have

x+Yb XI+(:) + R-R

8-O 
£

where

E sk
k-O

Grouping one R with X, using Eq. 5.2 to transform the second R, recallingthat for J-1, 0 :1 k -. Ji, and using the definition and convolutional

property of the s-transform [6.3, 6.121, we have

RHS(5.5) m OC+R) + Y-R I
S(dq )ij 1 (z)BC() +Y

I-
(5.6)sk "

kO

Again, using the definition of the z-transform, noting that in Y the
sum is from 0 to (J-1)1 while on the LHS(5.5) the sum vcies from I to
JI, and adding the last term of Eq. 5.6 to the LHS of Eq. 5.5, we obtain

aj (z) -58- (LHS(S.5) + R +s) - Sj.

where a varies from JI+l to (J+l)I,

* (X+R) + (Y+S' ) -S I
-1 J-1

* 0C4R) + -i j( S_-1 (5.7) j
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where

a varying from (J-1)I + 1 to JI,

From Eqs. 5.3 and 5.4, we find that

~I

uSj

Thus, the Sj term cancels out in Eq. 5.7 leaving us with the final equation

ij(z) (6qa)ij_(z)i(z) + laj-lw (B4)

Eq. B4 can now be solved iteratively, if desired, thereby proving
* Theorem 5.

W can also be explicitly defined in the same way as W (except that
R* can vary from zero to infinity). The importance of Theorem 5 is its
use in Proposition 4.

S3. Let sc u 1 and ur* 2. Then, we have for the
renewal time, T', for state 2.

E[T*] (l-qIlu'1  + j'2_ (B5)
(l-qI)

Proof.

E[T*1 * t kP[T*mkl

k-O

SkQ* 1 * Q12 (k)
k
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Os -D 5 Q2 Q12)- at 2 1.

Evaluating the last expression, we have the result. *

Proposition 4. Averaging We over one renewal of state uia*, we have

E[W*) -0 (36)8(l'.q1 )

Proof. The renewal time is given by T* in Proposition 3 and has pd

Q1i *Q1I *

E Sq. Lp aij(s), in Theorem 5, from one to infinity, we have fromEq. B4 :

A(s)-i0(z) (6q1 )A(z)f(z) + (z) (B7)

J-0

From the mean value property of the z-transform and the definition
of ij(k), we thus have-I

ilk [1 - -zD A(z) (at z-l).

The proof is finished by evaluating the MHS of this last equation
and simplifying. j

We are now ready to prove the analogue of Theorem 3 (where the IFI
functional is considered to be a quantity dependent on the plan but
evaluated on the model) in

Theorem 6. For SHC(2),

IFI(-;2) - vO(l-8 1 )P 2 (-;2), (a.e.]

where 2 - `s* and P2 (-;2) is given in Theorem 4. I

435



Proof. Again by the Strong Renewal (or Ergodic) Theorem,

Lin"I UN-- ROW I (.,.]

N.. N E(Tw1

8(1-qI) (l-qi)l +

from Eqs. B5 and B6,

*1q' +(1V2

* (l-0')P2(.m2) ,•

from Eq. 33.

Multiplying by v finishes the proof.

In particular, the equations in Theorems 3 and 6 agree, as they
should.

Corollary.

AI•I(-;2) - vO(l-0)P 2 (-;2)

Proof. The same as in the Corollary to Theorem 3.

2.4 TFI(.V-2) and Comparisons. Given the real number p varying over the
open unit interval, the inequality "l-qI < l", Theorem 1, and Theorem 4
imply

P2(• P2 p(-; 2)
for SC(l) and SMC(2). We shall show a similar result for AFI(.n;l) and

ATFI(.;2). Before doing this, we record the following result *

ATFI(-;2) - AFI(-;2) + AIFI(-;2)

*(l-vP2('u; 2)) + vO(l-01)P2(-;2)
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- l-vP2(o;2)(8+01 l) (08)

Theorem 7. For p in the open Interval 0 p y 1,

ATPI(*;2) I Afl(-;l) iff B(1-01) ? jej

where V 1 + 4 UJ). f
Proof. From Eqs. A2 and B8, the statement in equivalent to

P2 ('-jl) a Pl(o;2)(6 + BI+ 1).

This inequality is, in turn, equivalent to

( 81 + +I~l)()4 + i) S (1-q 1 )u'1 +

-('U' + '4) " u'i

Dividing through by (u% + ÷ý), we have

(o + 01+1 ) s l.qI\l

: ~~or • )

1-(0 + 01+1) 1 qac?,.

However,

1-(0 + 01+1) - O(1-BI).

Thus,

which finishes the proof.

For p - 0 or 1, the formulas in Theorem 7 are equal.

Another type of CSP, denoted here by CSP-14, is the plan obtained from
replacement of DSI in CSP-11 by USI. For CSP-14, the SMC model is straight-
forvard since the limited inspection scheme runs with the natural flow of
operational time. For this model, we have

Proposition 5. Letting sc - 1, uls 2, and ck (or USI) - 3,
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l-q + U1 +I

Proof. If e is the stationary vector, using the SHC model for the
ck phase found in [6.21, we have

S(l-q 3 )9*- (1-q', 1, 1).

The rest of the proof easily follows from A.25 given that 03 I.

It clearly follows from Proposition 5 that

AFI(-;4) - l-vP2 (-;4)

Thus, to compare AFI(o;4) and ATFI(-;2), it would suffice to compare the
expressions which are analogous to those in Theorem 7. However, to avoid
a long proof, it also suffices to give the following probabilistic argument.

Upon finding a defect in the sampling phase, I new units are inspected
with CSP-14 while, on the other hand, at most vi new units are inspected
under CSP-12. Since the transitional probabilities are the same from the
limited inspection (pseudo) phase in both plans, the proof is finished.

3.0 DSI - TRANSIENT. Two interpretations of DSI for the transient case
are treated in this chapter. The first version is the transient case of
fDSI, already dealt with in Chapter 2 for infinite N. That is, DSI is
applied to both phases of CSP-11 with constant "pseudophase" transitional
probabilities. In contrast to the first version, the second plans "pseudo-
phase" transitional probabilities to mc (or uls) monotonically increase
(or decrease) with increasing duration in the sampling phase, until
truncated by l-ql (or qI). One can infer from this monotonicity that DSI
is applied only to the sampling phase in the following sense. If a defect
is found during a sampling segment, k + 1 time units from entrance to this
particular segment, then only the previous T units are to be inspected,
where T w min(k, I). Upon completion of this modified DSI, uls is entered
if no defects are found (with probability qk); otherwise, sc is entered
(with probability l-qk).

3.1 Introduction. The analysis of each version involves three stages.
However, for convenience in the final section, a fourth stage is added for
the second version.

438



In the primary stage, the modified sampling phase is partitioned
into I + 2 SMC states which are consecutively labelled 0 through I
and b. The purpose of this splitting is the derivation of an expression
for the monotonically increasing portion of the functional W(.).

In the secondary and tertiary stages, SMC states 1 through I are
recombined into a preliminary macrostate, c'; it, in turn, is combined with
SMC state 0 to form the final SMC state, c. The purpose of these latter
two manipulations is to facilitate the derivation of an expression for
the truncated portion of W(.) by avoiding complex sums of products of
characteristic functions.

The chapter concludes with a comparison between the TVI functionalIIof each version for infinite N (or 0).

3.2 Strict DSI. In order to analyze the transient case of DSI, the SMC
model, shown in Figure 4, is used. It is denoted by SMC(3).

Figure 4

Model for CSP-12 (SMC(3))

6qI

* q1

scca

S- 5(1-ql), r l-41q, V'- T/r, and S' - B/r

Concerning this model, we have

Theorem 8. SMC(3) is an irreducible SMC.
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Proof. The a-transformed pdf's of the states making up SMC(3),
togather-vith their corresponding transitional probabilities in the
embedded MC, are given below.

k.,k+l(z) - $/a, qkk+l - 0, for 1 1 k 1 1-1

ika(s) -/s, qka * , for 1 k LI

4kO(s) 8qI/z, qkO d 6ql, for 1 A k sI

40a (z) '/(,.•6q ), qo a " '

4o1(s) " /(s'•ql), qoj S '

Q o(a) -ql(s-q)/O(E), %0 "

The equations follow from SMC(2) by observing that -u-•*, since its holding
time pdf is geometric, can be ret~arded as a MC state which jumps to Itself
and sc with probabilities T and 6, respectively.

Ordering the states of SMC(3) in the same manner, from left to right,
as they are ordered in Figure 4, we obtain the linear system of equations
from the matrix equation a " eT, T the embedded MC transitional matrix.

60+ ej + (1-qI)esb a • (8.1)
J-1

ea + 8qI ej + qIeb e 0  (8.2)
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Sfor 1 A k t 1-1,

dek =ek+1

* and
' psi eb

From this *yete, exclusive of Eqs. 8.1 and 8.2, we obtain

*k - Bk ,1 : k S 1 (8.3)

and

Ob 801t 06 (8.4)

Eqs. 8.1, 8.3, and 8.4 Imply

also + O'(l-q1)(l-O 1)eo + (1-q')eO *a

or
Seo " "a(8.5) ;

1-.dqi

Since a In normalized, we have from the sum of Its components, Eqi. 8.3,
8.4, end 8.5

Seo . G('6 (8.6) •

where

G - (1+8)(1-8q 1)- 81+2.

Thus, Eqs. 8.3, 8.4, 8.5, and 8.6 imply

"G G
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• • - ' o.. - .,-

and skendek

where 1 5k S I.

Differentiatin8 the O's, multiplying through by minus one, and
evaluating the results at a = 1, ve have (adding term where appropriate)

)•gt " Oi ..0 8q.....

11-6qI

Ob and Uk 1

for 1. : k s 1.

This finishes Theorem 8.

Corollary. For SMC(3),

+ j + Ob P2 (-;2) (8.7)

Joi

where the LBS refers to SMC(3) and the .IS refers to SMC(2).

Proof.
I

IA0e0 + E Ukek + Pbb (8+)/C

k-i

* 1/0

Sa a lG '( ) +- ,

i GL2 (-;2)

Thus
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LUS (8.7) - GP2 (-;2)(1/G)

" P2 (*;2)

Relative to SMC(3), we have

Definition 5. The monotonically increasing portion of W(t), divided
by t, and considered an being defined on SMC(3) is

kCkln) (1-Ck+o.1(n•)) :

I'(t) n0 ka

t it

Thus we can also write •

Operating on this equation and the RIIS of the equation in Definition 5
with esc['], we obtain

t-.l I

* ~ ~kPak(n)

AIFI'(t;2) n 6 t (C1)

which can be evaluated by using the z-transformed Backward Equations for
$ SMC(3); see [6.13 for an example of such an evaluation. Letting t approach

infinity, we have

AIFI'(*s;2) *6 8 kk (C2)

k-1

Since, from the last part of Theorem 8 and from A.25

ak G~~ ~)Ga;)

2(;2
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an

and ab ( (Ub)(GP2 (2))

o 8+lp2 (n;2)

• nw have, from Eq. C2,

E -
k

•a (01 -1 6B 1 )P 2 (m;2)

From A.27,

W" (b)b - 61*b

where W" (t) is the constant part of W(t). Therefore, adding the last
two expressions and performing the indicated operations, we have

Li. N[W~t)] . B(l-0I)P2 (-.2).

a result which agrees with that obtained in Chapter 2.

In order to deal with the constant part of the functional for
finite t, we proceed to reduce SHC(3) to a more manageable model as
described in Section 3.1.

Stage two consists in filtering out the states I through I in SKC(3),

an operation which leads to a new model: SMC(4). The details and results
of collapsing SHC(3) into SMC(4) are given in

Theorem 9. SMC(4) is an irreducible SMC obtained from S1C(3).

Proof. Let c' be the ordered ensemble composed of the states 1
through 1. Noting that the pev of cl is (1,0,0,---,0), 1-1 zeros, we
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apply combinatorial analysis to get (dropping the argument a)

CO "410o + 61242o+ --- + 4242..

;J-0

- (- )(9.1)

In the same way, we also obtain

4a (9.2)

and

QC'b a (9.3)

The remaining results concerning SMC(4) can be easily derived

from the above equations. In particular, see A.29.

Corollary.

SHC(4) < SMC(3)

where "<" is the filtration ordering relation.

Proof. SMC(4) is a filtration of SHC(3) by the proof of Theorem 9
and A.29.

Stage three consists in filtering out state c' in SMC(4) yielding
SMC(5). The details and results are given in

Theorem 10. Filtering out c' in SMC(4) yields a new S1C, denoted by
sI4c(5).
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Proof. Let the ordered ensemble (O,cf) be denoted by c. Then,
the pev for c is the vector (1,0).

First construction. Applying combinatorial analysis to the trans-
formed pdfrs in Theorem 9 (Eqs. 9.1, 9.2, and 9.3), we have

oca *&o ),' Q'Oa

{ *A)A A

(Q&+ Oc' Qc'a)?Qc c

"lQ oc'Qc'o

•'s+l.JI+l ( 3

where

c(s) - zl+l(z-(B + 6q')) + 80(• )•

Similarly,

Qob w Qc ~ ) Qoc'~'b

oc' 4c'b
"1-Qo' Q•'
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c (Z)

Second construction. Since SMC(5) is the model to be used in
deriving an expression for the constant part of IFI(t;2), t finite, we
will sketch the more elaborate SMC method. The relevant absorbing SMC
has transient states 0 and c'; absorbing states a and b. Using A.21,setting a - A, b - B, and c' - 1, we obtain the following transformed

Backward Equations (four others, not needed, are omitted).

OA &Ol~iA + ýOAPAA

ýIA 01O"OA + l•sIA

A

P IR

OB 0001~B

P ~1B 400B + 041BBB

BB 0

Solving for POA in the first set of three,

P o(40A + •0oQ,1)
OA 1-4Q0i&0

Since the pev of the ordered ensemble (0,1) is (1,0), the above equation,
Eq. Al, A.13, and A.22 i:,ly

Qca FOA

m POA/f4
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.- Eq C3

Solving for POB in the second set of three,

P OB 
__

Again, since the pea - (1,0), the above equation together vith Eq. Al,

A.13 and A.22 imply

Qcb f03

* Eq. C4.

SMC(5) has three states: a, c, and b. The transformed pdf's for
transitions of a to c, b to c, and b to a are the same as those for a to 0,
b to 0, and b to a, respectively, in SHC(4).

We finish the proof of Theorem 10 by remarking that states a and c
cannot be combined since a pev (from state b) does not exist.

Corollary.

SMC(5) < SMC(4).

Proof. Construction of the state c in SMC(5) is equivalent to
filtering out state c' in SMC(4). SMC(5) is an irreducible SMC by A.29.

We can nov derive an expression for the constant part of IFI(t;2) in

Theorem 11. Given the 3 state model, SMC(5),

IFV" (t;2) avI Nb(t)-Cb(t). (C5)
tt

Proof. Nb(t) gives the number of entrances to state b by time t.
The number of exits from state b is clearly Nb(t)-Cb(t), the second term

being the characteristic function of state b.
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Corollgrr.

AIIFl" (t;2) *t ---- U) Pb~)

Proofe Apply laC.] to Sq. C5.

In order to uae Eq. C6, we must be able to develop a useable
expression for the mean of the renewal function. Towards this end,
we prove

Proposition 6. Let N(t) be a renewal process. Then

1(1(t)] R* iP* (t (i))imo

where F is the renewal pdf.

Proof.

P(N(t) - ni - P[u(n+l) > t] - P[U(n) > t]

- Hoi*(n+l)(t) - 0 ,*p(n)(t)

" Pn(t)

Thus,

Thereforej

i'n(z) n

nmO n
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- PC.,.) -•

From the last function, we have

(a.

The LKS is the transform of the mean and we are done.

Corollary 1,.

,a(b(t). I .O*Fab*(1-bb)- (t)
t t

where the inverse expression is shorthand for the summation.

Proof. Renewals of state b, starting in state a, form a delayed
renewal process with initial probability function Fab. Then Proposition 6
finishes the proof.

Corollary 2.

Lim Ea[Nb(t)]

Proof. From Corollary 1 above, we have

Lim KEeNb(t)I Lim Ho*S(t)
t t-1 t '

ULim 4t)
A. 0- t
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I.J

where S(t) -EO*Iab*(l-bb) 1(t),

Li (.4l tab
1 a / (l-Pbb)

k~b(B)
* 1ab(') (at a " 1)

-sDshb(Bs)

-8ab.

The second equality follows from the simple argument that if S(.)
is a sequence with limit A, then the Cestro limit of S(O) also exists
and is equal to A.

From the second corollary to Proposition 6, we have in addition

z [Nb(t),,] Pab(t) - V185bvz t " t

as t approaches infinity, since the second term goes to zero.

The main results about IFI(t;2) are summed up in

Theorem 12. For the transient case of CSP-12, we have

AIFI(t;2) " AIFI'(t;2) + AIFI" (t;2)

"v•8jkPak(n) + v1 Ea(Nb(t)J]Pab(t)

where the first and second terms on the RMS are evaluated using SMC(h),
h 3 and 5, respectively.
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Proof. Combine Iqs. C2 and C5 (taking the limit, we get v times
the result using W1 and W" ).

When t is finite, in order to compute ta[Nb(t)], we need to know

Fab(t) and Fbb(t). Since 5MC(3) has 3 states, we have 9 aackward
Equations, only one of vhich to needed for the mean value of the above
reneval function. The following statements sketch the results.

From Theorem 10, A2.1, and A1.4, we have

tbb - 4Qeb + &bafab + 3b

This equation ts equivalent to

/ 0

or

1 - QbaF'ab + %bd~eblPbb

But, LHS - Fbb. Therefore,

"bb - 4batab + •ti•cb.

From Theorem 10,

&be and Qba •

Applying combinatorial analysis to the transformed pdf's of 8MC(5),
we have

Feb Q (ca~ac)'l cb
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and

tab '(44(84 CAca) 4ac~cb

UQacQcb/(1"'ac~ca)

From these equations, E(Rb(t)]/t can be computed (cf., 6.1].

The use of 31'C(3) suggests the following alternative treatment of
011-12. Instead of splitting Me~* into I +42 states, we split it Into 4
an infinite number by splitting state b into the states bQj), IIj A *
The resulting model, SHC(6), consists of two nontrivial SMC states
(a and 0) and an infinite number of trivial SHC(ie, MC) states (1 through I
and the b(j)'s). For the long run case, we can obtain AIFI(a;2) via the
transient case as shown in

Prpstin7 SHC(6) is an infinite state, irreducible, and
positivereurrenit SMO. The result for IFI(t;2) for SMC(6) is the same
as previous results.

Proof. For b(j), ls1j t, we have

Ob(j) 601+.3 12(-12)(71

and

Pb(j) 1-

Thug "b(j)b(j) = 1/Qb(j) which is finite, proving the chain positive
recurrent.

For the functional, it suffices to deal with the part defined on
the b(j)'u, W"'.

t t
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Taking the mean values conditioned by an Initial entrance from
state a,

aCW"'()I 8 ab(l)(n)
t t

which, as t approaches Infinity, approaches

820I+lP,(n;2)EU a

S, ' 8 '-'

by Sq. 7.1 and the Lebesque Dominated Convergence Theorem (forsequences). '
uPropoeition S. The models used for CSP-12 are ordered, w.o.

filtration, as follows.

SMC(2) SMCM5 < SMCM4 < SMC(3

7 and

K GMC(5) < SMC(6)
Proof. Corollaries to Theorems 9 and 10 imply the first ordering.

By filtering out states b(a), j a 2, we let the second ordering.

- If we split state a into its component MC states and state 0 into
* ra MC state in SMC(6), we got (S)MC(7) > SMC(5), SMC(3). If we instead

split a and 0 as before but now split b by treating it as a MC state, we
get (S)MC(8) > SMC(5), SMC(3), Clearly, (S)MC(7)-(F)MC(8). MC(8) can be
thought of as a finite state MC model which fills the role of the initial
MC model described in the introduction to Chapter 1, though the construe-tion is backwards from that description.
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3,3 Libsa pIl To obtain a more liberal DSI, we alter the
follwingtransformed pdf'-s for states 0 through 1-1 in

Theorem 13. The DST sampling plan CSP-.13 is obtained from the
8NC(3) mdelofCS?..l2. The results SMC(3), is an irreducible SHO.

Pro.The appropriate quantities and properties are given
below,

40 0 B/(-8) q0 1

QO * q'k/s, qkO * qk

where 1 1 k 1 1-1.

The other transformed pdf's remain the same as those for SMC(3).

Ordering the states a, 0, 1, ---, Is and bo we obtain, from the

stationary vector equation, the system of equations now given.

8 (l-qi)sj + (1-qI)Gb * ea (13.1)

jul

a& +8 qiej + q1eb - so (13.2)

Ok~-1*,0 e (13.3)

where 1 1k AI, and

0100 Gbe (13.4)
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From iql. 13.2, 13.3, and 13,4, v get

Os" ,-(q' so (13,5)

Since the components of a are normalized, we obtain, together with
Eq. 13.5,

so - BG (13.6) 1
where

G - dp(1-(Oq) 1 ) + (1-0q)(1+8-01+1)

Eqs. 13.4, 13.5, and 13.6 imply

ea = 5(1- (Ba)I)
a. G

1 s k i I
ekE G

and

b - "G

Similarly, from the derivatives of the transformed pdf's, we obtain

ja" loin" , b I 1,and Pk 1
1-g' 10 1

where 1 9 k A 1.

3.4 Comparison of CSP-12 and CSP-1 3 . In the equations to be derived
in this saction, P (.w3) is the long run percentage of time spent in
state b-2 in the three stage reduction of SMC(i) to SMC(2) w.hich is the
analogue of SMC(2) for CSP-13. P2 (=;3) can also be directly obtained
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3I

from SNC(3) bt filtering out the states 0 through I and b, at#ain
yielding 5NC(2), This latter filtration to equivalant to the UiC
method applied to the ordered ensemble 0,2., to.. I, b), with
pev a (1, 0, ... , 0), 1+1 zeros, to obtain the two state model
for Cfl'-13.

Given the stationary vector components and the state mean time
values, from Theorem 13, ye get the a's for CSY-13,

2k - 21-a3), 1 1 k 1I (13.6)

and
0- 01+1P (-;3) (13.7)

where

"""(1-sq) i +

(1 a and 2 b) .

Applyipj the Ergodic Theorem and Eq., 13.6 and 13.7 to the
functional W(t), defined as SMC(2), yields

I
Lim 2[9(t)]

1

0 +62p (-;3)D 1

+ 610(+1 P 2 (-;3)
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Upon takung the limit, the definition of 171(t13), analogous to

"Definition 4, gives

AZII(e-;3) - VO(l-$1)P2(-;31,

Adding AFl(m;3) to the above leads to the final equation

ATFI(-;3) - l-vP2 (1-;3)(8++I'l) (C8)

With regard to the last equation , we have

Theorem 14. For p in the open unit interval,

ATFI(-;3) < ATFI(o-;2).

Proof, The statement is equivalent to

: F~P (-;3) > (-1.;2)

which is implied by

* 1-4q,.•

Dividing both aides by p and using the theorem on geometric sums, the
above inequality is equivalent to

• ~~~I-iI- /-

0 (1+ (Oq)J) < 1+ qJ

or

S8(l+8 1] < [1+821

But 0 < 1 and 0s@ < $2, for p between zero and one. The cases for p - 0
and p - 1 lead trivially to the same formulas,

To handle the transient case of CSP-13, SMC(T) is used for the in-
creasing part of W. The constant part of W is handled in the same way
as the corresponding constant part of W is handled for CSP-12. That is,
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1SMC(•T) is collapsed (or filtered) to IMC(74) which In turn is collapsed
to SMC(r). This analogous two state process for CSP43 in briefly
given in

Theoren_ 15, For CSP-13, filtration gives the following ordered
set of modelesr

SMC(3) < SMC() < S4C().

Proof. Combining states 1 through 1, In SMC(3), into state ce

as is done with SMC(3), we have

" (0/0)1 I

Similarly,
t'o " 1D4+12&2o+'"-+Q12&2$ Q...0:

QC'- Q--O

Secondly, combining states 0 and c' into the new state c is
•* similarly accomplished and yields

+ •Oc'•c'b
AQcb = I -
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•'• O~~ca . . .

"The correeponding q's are given by

} ~ ~qcb "B
q~b- A

and

qcs A

where

A -p+ 6q(0q)1 .

Once again, the constant part of the functional W(t) is given by
Sz I~b10) F ab Wt

4C0 DSI AND OTHER FUNCTIONALS.

4.1 Introduction. The TFI functional makes a distinction between the
two plans treated in Chapter 3 in terms of the "pseudophase" transi-
tional probabilities. However, because of its very definition, TFI does
not explicitly take account of multiple inspections of a given production
unit. That is, TFI is defined in terms of an operational time which is
measured by a flow of successive and nonrepeating production units, In
this chapter, a new functional, along with a variation, is introduced to
augment TF! as a measure of plan performance. The functional is Fraction
of Repetitions (FR). It will be analyzed only for the first type of plan

.CSP-12). Furthermore, FR is chosen as the principal functional because
1.) it is naturally normalized and 2.) its long run moments can be
naturally derived from those of the transient case with a certain amount
of ease. Short run higher moments for its variant cannot be obtained so
readily; indeed, appeal must be made to the Strong Ergodic Theorem (or
Renewal Theorem) for even the long run (expected) value.
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4.2 SMC(9) and FR(N:2). The model which will be used, SMC(9), Li a I
I• modification of SMC(2) and is portrayed in Figure 5.

Figure 5

L CSP-12 and SMC(9)I J
1 0 1b~
The transitional mAtrix of the embedded MC Is

a 0 01 b

a ro 1 o 0

0' '/r 0 0 S/r

b 1-qI 0 qI

where - 6(l-qt ) and r 1 1-6qW.

The matrix entries are obtained from the transformed pdf'e given in

Theorem 16. SMC(9) is an irreducible SMC

Proof. The transformed pdf's are

QaO - ql(z-q)/4(z)

,oa " '/:, Q•oo' " 6q--, and 40b - /z

OQOa- '/(zs•-q) and QO'b "/(z-6q 1 )

U • "/(z-B) and Qbo' "
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The mean holding times, obtained from the derivatives of the
transformed pdf's, are

:) ~ ~ ~ U Ma U" a , , Pot Z6q and Ub =•

_ _ 1- 81

Using the matrix given after Figure 5 to solve the usual sigen value
equation, for the stationary vector a, yields the system of equations
given below.

Te0 + - eot + (l-q 1 )eb - ea

6qieo + q'eb M eot

Beo + I eot a

(where r w 1-6qI).

Solving the system gives

ea M eo

l-q

eb" (1-- q e0

Again we use the fact that the components of the stationary vector add
to one. Using the equation which expresses this fact, together with the
last three, gives

ea s o ,

. (1-q')/G

eo, - qI(1-6qI)/G
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and

b 0 BIG

where

G (1-q 1 ) + (1-6q1 ) + 0.

We finish the proof by translating, into English text, what the
transitions mean in BMC(9); we •ill write "state x goes to state y" as
"x to y". 0 to b if no defect, 0 to 0' if a defect is found but DSI
finds none, 0 to a if a defect is found end DSI finds one or more, 0' to
a if a defect is found and DSI finds one or more, 01 to b if unit is either
not inspected or is, and found non-defective, and 0' to 0' (remaining in 0')
if a defect is found but DSI finds no defects. The transition 0' to 0' is
"internal" - that is, 0' has no self transitions and is consequently a non-
trivial SMC state (see its pdf above and Chapter 1, section 5).

We are nov ready to define the principal functional in

Definition 6. Given the model SMC(9) for CSP-12, the functional
Fraction of Repetitions in s

C0 ,(k)
/Na(t)-l k-u0FR(t) . (-I + t

t /

The definition of FR(t) is motivated by the comments made at the end of
the proof to Theorem 16. In addition, we remark that minus one appears
since the inspection process begins in state a and the summation appears
for 0' since self transitions are not allowed. For infinite t, FR has the
value given in

Theorem 17.

Lim FR(t) - , ,e.]
t-MO (1-qI)Výf + T

where 01 and p'2 are defined in Theorem 1.

Proof. From Definition 6,
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7.

Lim n(t) L * Li. (.t)•) . ( im Co(k)

a + [a.*.]

by the Strong Irgodic Theorem. From Theorem 16 and A.25, ye have

•s 4'(1.qI)+(1-qI)+qI+ 0/6

and

CI Wi4(l-qI)+ 412

Adding the two expressions finishes the proof.

Since (I).(tFR(t)) can be regarded as the degree of inspection
overlap, we are led to define a variant of FR(t) in

Definition 7.

t

FR'(t) - I(tFR(t)) + t

Concerning this functional, we have

Theorem 18.

Lim FR'(t) " , [a~e.]
t+ (1-q)u 1 + U12
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Proof. From Definition 7,

Lim FtI'(t) Lim

ca• + CD + 1

by Theorem 17,

the result.

4.3 Expansions and Extensions. Another possible treatment of DSI is
the expansion of )1R (and mKC models to "transition state" models. We
vill work here only with MRP's.

Given a MlP (Y, U) as in A.19, we can easily prove that

P[Tn - tjYn.1 - i and Y. J] * Qij(t) (Dl)qij

where Tn Un - Un.I. From A.19 and Eq. D1, we can also easily show that

f((Yn, ¥n+l), Un)/n varies over the nat'1 nos.1 (D2)

is a (derived) MRP whose pdf's are given by

P[(Yn, Yt+i) (tk), .Tn tI(Ynn-l, yn) " (i•,j)

q q Lk~jiL(WqiiJ5 q~•(D3) -

We name the MRP given by expression D2 and simplify notation in

Definition 8. The MRP given by D2 is called the Expanded MRP. Its
pdf's are given by Eq. D3 and denoted by
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Q(ij (Lk)(t)o

Such a derived process can automatically keep track of transitions,
their number and type* in the parent process. Thus, for example,
.Ft(u;2) could be defined (and evaluatio on "expanded" MR?!(2) as given
below.

p"Theore 19. Upended 113P(2) is a HIP.

Proof. Fram Definition 8 and Theorem 2, the transformed pdf's
are (dropping the argument)

Q(12a)(a) "q412

jQ 12
Q(212)(22•) "Q22

-• --

•, 1221 IqI A22 .;

"4(21)(21)

(lq)

Letting s - 1 in the above equations, we got the trsnsitona. matrix
of the embedded MC

-(12) (22) (21)

(12) 0 q1  l-q1

(22) 0 q1  l-q1

(21) 1 0 0

Using the matrix to solve for the components of the stationary
vector gives
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0(12) - (1-qI)/G, 0(22) -q/G, and s(21)

where

o -

-q

t

Defining •i•± as the mean holding tine till traneition to state ._from state 1, using Definition 8, and using the mean value propertyof the transformed pdf's, we set

"•!•i ~Applying Eq.q 19.1 to the transforued pdfs8 yields .•
-••IJ(12) " '1t/ql 2  1.( 2 2 ) " U22/q 2 2  U(21) "1.21/q 21  .

i]i .I Nij•1 I qj)q j t/],"

-22/q 1
- 421/(l-ql)

where P4, uj, and the transitional probabilities are defined (orderived from) Theorem 1.

Definition 9. For Expanded (HRP(2)),

* K~;2 *(I N(22)(t) + N1()

Theorem 20. For FR(t;2) in Definition 9,

Lim FR(t;2) - 1

" (1-qI).,4 +14,
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1

where 1(T] is given in Proposition 1.

Sroof. Theorem 19 and Definition 9.

We close this chapter by showing that SHC(9) cannot be collapsed

into any of the other models for CSP-12. Any collapsing would require
that the ordered ensemble S - (0,0') be a macrostate as defined in

Chapter 1. However, entrance from state a or b would require the pev
to be (1,0) or (0 1), respectively. If~we picked the former pev and
formally defined 6bS to be the same as Qb0', the Backward Equation system,

for SMC(9)', say, would not hold. For example, if S were a macrostate,
then, letting S - d, the equations

Pab(t) U Qad*Pdb(t)

and

Pbb(t) Qbd*Pdb(t) + Qba*Pab(t) + Jb(t)

would have to hold. However, entrance to d from state a results In a

greater probability for a given holding time in d than an entrance from

state b. Consequently, Pdb(t) is not well defined.

Another way of stating this inconsistency is provided by

Definition 10. Let Pxv(t;w) be the Fundamental Probability Function,

from x to y, given that enthance into x is from w.

Then consistency requires that Pxy(t;w) be independent of state w.
However, for SMC(9)',

Pdb(t;b) zO Pdb(t;a)

Similar results are obtained if we pick (0,1) as the psv and define

Qad formally.

Under certain conditions, we can still reduce a MC to a SMC in the
case that the relevant probability functions are indexed by ensembles of
MC states as occurs in SNC(9)'. The dependence of the probability function.
on the entrance ensemble Is equivalent to the dependency of the pev's. We
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therefore drop the restriction of pev independence by using v(x;y)
to devote the pev of the ensemble x given an entrance from y. Further-
more, since vj(xly) being sero, for a given MC state j, uan Imply that
j cannot be reached from any other states In x, x itself becomes a
function of y: x = x(y). Further deperdence is handled by dropping
the inner parenthesis: for exmple, x(y(w)) a x(yw). Letting a, b, a,
d, ... be (disjoint) ensembles of MC states which we wish to transform
into macrostates, we make a provisional definition for the holding time
pdf'e in

Definition. Given a, b, c, and v(a;c)

t

Qab(t c) - vj(asc)fJB

where j varies over the set a and B is the absorbing "state" corresponding
to b.

Given the underlying MC, M(.), the above Definition will yield a SMC
iff (letting R - M(Un), Un being the elapsed time)

P[Rn+l in b(ac.,.)IRn in a(c..), n.-1 in c(d,..), ... R0 in y]

M P[R,+l in b(a)jRn in a(c)]

- 2((nn, Rn+l) w (a,b), T 1 - ti(Rn-l, -n) (c, a)]

where Tn+l a Un+1-Un. Thus v(b, a(c.,.)) - v(b;a) and Tn+l depends only
on Qab( ;c). Therefore, it is necessary and sufficient to require that
a(c) include all the states of a which communicate with the states of all
other ensembles, (for all a, 0) since v(b;a) depends only on the one step
MC transitional probnbilities. In particular, it is sufficient that a(c) =
a, for all sets a and c.

Under the abve necessary and sufficient condition, we can now
write

Pad(t;c) = Qab( ;c)*Pbd( ;a)(t)
b

+ GadJa(t c)'
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From another point of view, we can also let a(c) denote the state
(,&a;x( tc)), x varying over the exit states. Using this latter
notation, we can sgt

Qab(tgc) " Qa(c),b(t).

For a given MC, the resultant number of states may be smeall enough
to warrant 8lC reduction, in the above case of dependent pev's, if the
reduction in complexity is substantial enough. This extended 8MC re-
duction can be applied to SMC(9); S(a) - the ordered set (0,0') and S(b) -
(0'). However, nothing is gained here since we still have 4 states.

In closing this chapter, we point out yet another deviation from the
conditions of a state independent, stationary pev. The deviant condition
can be found in C6.2, Chp. 51o The type of pev found there is an initial
pev used in the arbitrary entry case of CSPts. It is shown that the
existence of these pev's is equivalent to that of initial (or delayed)
holding time pdfts in the stationary (or random entry) case for er$odic
SMC's. Thus, this special type of pev is handled in a manner analogous
to that used for state dependent pay's - as an "index" (given, in the
paper cited, by a prime over the Q's).

5.0 CONCLUSION.

5.1 Summary. Two approaches to the DSI modification of CSP-11 are
considered in Chapters 2 through 4. The first approach, found in
Chapters 2 and 3, ignores any overlap in the inspection process by using
a functional, defined on a new DSI model, to count only the additional
units which are inspected from sampling phase segments - units which
would otherwise not be inspected under CSP-11. Since the functional TFI
is not sufficient to deal with all the important aspects of CSP-12, a
second approach, found in Chapter 4, uses a new functional, defined on a
slightly different DSI model, to take account of inspection overlaps. In
either treatment, there is no explicit backtracking in operational time
itself; both approaches incorporate the time shift into the transitional
changes, induced by DSI, which are, in turn, incorporated in the pdf's of
the underlying models. Throughout the paper, variations in functional* and
u.ampling plans, together with comparisons of them with the primary objects
of study are also considered.

5.2 Methods Used. Two principal tools are used in the analysis of DSI:
SMC (and MRP) reduction and the a-transform. Since the SMC's constructed
for the analysis are modifications of the SMC model of CSP-11, the process
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of constructin8 a 5NC class from a MC model, described in Chapter 1,
Is turned around. In Chapter 4, the importance of the probability
entrance vector (pev) ti brought out by the incompatibility of 5210(9)
vith the other C5P-12 models. Also in Chapter 4, the use of &a
Expanded HP in the analysis of DBI Is Illustrated; this kind of
analysis could be elaborated on for further Investigation of functionals
dependent on a sequence of transitions.

We conclude this paper with the observation that DSI can be used
to modify the more complex CSP's described in Chapter 1.
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APPENDIX

A.O SHMI MAKMOV CHAINS. Given that X(.) is a time homogeneous, aperiodic,
irreducible or absorbing, and finite state Semi Markov Chain (SMC) with
state space S, the following notation and statements are used in the body
of the text [cf., 6.7, 6.10, 6.14, and 6.151.

A.1 Notation and Definitions. For i, J, k, A in S:

1. Qik(t) - P[X(t)-k, X(t')-i, 0 < t' < tIX(0)-l].*

This function in the (defective) pdf of the time of sojourn in state i

until a transition is made to state k (for discrete t and i 10 k).

2. PLO(t) * P[X(t)-kJX(O)-iJ.

This function is the fundamental probability function of the SMC
for (I to k).

3. Fik(t) - P[X(t)-k; X(t') •k, 0 < t' < tIX(O)-i].
This function is the first entrance probability function for (- to k)A

4. Jk(t) - Ho*(80-1 QkL)(t).

This function is the probability of not leaving state k by tine t.

5. Un(k) is the time of nth entry into k.

6. Nk(t) - Max In/Un(k) I t

This random variable is the renewal function for state k.

7. Un is the time of nth entry.

8. Y(n) - X(Un) is the embedded Harkov Chain associated with the SMC.

*This definition corrects statement 3, definition 5 in (6.2, p. 664).
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For the case where self transitions are allowed, we can use the

symbols above to define a Markov Renewal Process ()RP).

9. A MRP is the ordered pair (Y, U) such that, for states i, k in 8,

SP[YnkT TnuotIn I, Yn-2' , YO; Tn. 1 1 Tn-20 ".., To]

= P[Yn.k, TnetIYn-lhi], Tn a Un-Un-1

= Qik(t).

(Note that this pdf is, in general, different from that defined in A.l1.)*

10. The SMC X(t) associated with a ?.RP is defined by

x(t) - Y(t)

a YN(t)

where N(t) * • Nj(t), j in S.

A.2 Statements.

1. By time homogeneity and the method of first entrance, we have the
Backward Equations:

Pik(t) = • Qij*Pjk(t) + ( 6 ik)Jk(t).
j

2. Pik(t) a Fik*Pkk(t) + (6ik)Jk(t).

3. If qik a HO*Qik(+ in),

T - tqik]

is the transitional matrix of Y.

*This definition corrects that given in (6.2, p. 695].
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4. If X to irreducible, the equation

XTa

has a unique normalized solution called the stationary vector of
the SMC.

5. Lim PAW(t) -

Ok (or Pk(-))

where Uk is the mean time of sojourn in state k and the e*'s are the
components of a.

6. Lim )- k.-
5+1 zl 'ik (a "' -

7. (Strong Ergodic Theorem.) If W is a functional defined on the SMC,
we have, as N approaches infinity,

V WX()) approaches E0 (W]1  (a...)N

- W(k)Ok.
k

In the case of self transitions, we have

8. If (Y, U) is a MRP such that qji < 1, the unique SMC induced by the 1RP
has its pdf's given via (i 9 J)

4ij ifiij>

- Qij, otherwise

whore the Q's are yiven by A.19. It is equivalent, almost everywhere,
to the associated SMC.

9. The propettios of time homogeneity, irreducibility, and speriodicity
are preserved under filtration.
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PROGRESSIVELY CF1'SORED SAMLING IN THE

THREE PARAMETER LOG-NORMAL DISTRIBUTrION'

A. Clitford Cohen
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Athens, Georgia

SUMMARY

J This paper is an extension of previous work by the writer con-

rcoming progressively censored sampling in the normal distribution [4]

and in the Weibull distribution [6]. Here local maximum likelihood

estimators and estimators which utilize the first order statistic are

derived for the three-parameter log-normal distribution when samples

Sare progressively censored. An illustrative example involving life

test data is included. Various properties of the proposed estimators

are investigated.

)EY WORDS

Log-normal Distribution
Progressively Censored Samples
Life Testing

1. INTRODUCTION

Progressively censored samples frequently occur in life and fa-

tigue tests, where individual observations are time ordered and where

at various times during a test, some of the survivors are removed

(i.e. censored) from further observation. Samples of this type from

*Research supported by the National Science loundation through
Grant GP-34318. Presented to the Institute of Mathematical Statistics,
Montreal, Quebec, Canada, August 1972.

A This paper appeared in Technometrics 18(Feb. 1976) PP 99-103.
Permission of the editors of that journ%]. to reproduce it here is
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the normal and from the exponential distribution have ruceived previous

attention from Herd [10], Roberts [18], and the writer [4]. Progressively

censored samples from the two-parameter Weibull distribution were con-

sidered by the writer [5] and by Ringer and Sprinkle (17). More recent

work by the writer [61 deals with progressive censoring in the three-

parameter Weibull distribution. The present paper is concerned with

progressive censoring in the three-parameter log-normal distribution.

2. THE SAMPLE

Let N designate the total sample size, and n the number which fail

and therefore result in completely determined life spans. Suppose that

censoring occurs in k stages at times T Jul, 2 ... , k and that

r surviving items are removed (censored) from further observation at

the Jth stage. Thus

N-n+ z . (1)

Two types of censoring are generally recognized. In Type I censoring,

which is of primary interest here, the T are fixed, and the number of
j

survivors at these times are random variables. In Type II censoring,

the number of survivors are fixed and the T are random variables. In

both types, the rj are either fixed or determined independently of the

life span X. The observations xi are ordered according to magnitude.

The likelihood function L(S), where S signifiies a k-stage Type I

progressively censored sample of the type described, is

n k r
L(S)-CH f(x 1 [l - F j(TJJ (2)

i"1 Jul

in which C is a constant while f(x) and F(x) are density and distribu-

tion functions respectively.
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3. TIlE LOG-NORMAL DISTRIBUrION

We write the density function for the three-parameter log-normal

distribution as

f(x; V, a Y) 1 e,[lnCx-y)-']2/2a2, < x <, (3)

Caw- (x-Y)

0, elsewhere.

This distribution derives its name from the fact that when the random

variable X is lognormal (u, a, y) then Y - ln(X-y) is normal 02, a

" The mean, median, mode, variance, coefficient of variation, 81 and 82

(Pearson's Betas) for this distribution (c.f. Yuan [23]) are

M ye
A1 a a 3 E (w+÷2) (lo-l), • t

82 E a4 = W4 +2w 3 + 3w,2-3,

where
o2

and where a3 and a 4 denote the third and fourth standard moments.

The coefficient of variation about the left terminus is defined as

cv • T /C(Ux-y). (6)

Previous investigations by the writer [3], Aitchison and Brown [1],

Hill [11], Wilson and Worcester [211, and others have dealt with maximum

likelihood estimation in the three parameter log-normal distribution when
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samples are complete. Harter and Moore [9] considered local maximum

likelihood estimation in the three parameter log-normal distribution

for singly and doubly censored as well as for complete samples. Hill

examined some unusual features of the likelihood function of this dis-

tribution which had apparently escaped tho notice of earlier investi-

gators. He demonstrated the existence of paths along which the like-

lihood function of any ordered sample xI, ... , Xn tends to a as

(y, u, o2) approach (xI, -ap w).

This global maximum of the likelihood function thereby loads to

the inadmissible estimators, y 1 w -x and 2 . - regardless of

the sample. On the other hand, when ww equate partial derivativs of

the log-likelihood function to zero, solution of these equations leads

to local maximum likelihood estimates which in most cases are reason-

able and as noted by Harter and Moore (loc. cit.) appear to possess

most of the desirable properties ordinarily associated with maximum

likelihood estimators. Exceptions may occur in small samples for which

the likelihood function fails to exhibit a clearly defined local

maximum.

4. LOCAL MAXIMUM LIKELIHOOD ESTIMATION

With the p.d.f. as given in equation (3), the logarithm of the

likelihood function (2) becomes

lnL *-nlna - I' ln(xi-y) El 1 2iy)U
2a

* E-rj ln[l-Fj] + In C. (7)
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Local maximum likelihood estimators(LMLE) are obtained by simul-

taneously solving the estimating ektuations

r .

ln L I 1 i n .nxi-)n o,

D ln L -n + L En l 2 "0, (8a o o 3 1 [n(xi-Y)Ii] (8)-~.~

a ln L n 1 n_________ k

lxi-Y 12  1 x1-F j

,C4; )T
Let Zj uZ(Cj) I (9)

Pu (T 4

where T
r C(T J E(x)dx - J gg(y)dy -J •4(z)dz.

F(EQ ~- (10)

in which f(x) is given by (3), g(y) Is the normal density Cua a2), *Cz)

is the standard normal density (0C1), and

yj alnTj--y), whereas &j (11)

It then follows from (9),(10) and (11) that

(12)

SWhen the results of (12) are substituted into (8), the estimating

equations become
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n ln(xi-Y).Pi 2 n 1

+ 0iE-V 0.ln 1xiY) 2EnrC1.. E1.-) = O.

Various iterative techniques are available for s'imultaneously

solving these three equations for the required estimates ii a, and y.

A procedure that has performed quite well for the writer involves

selecting a trial value yi for y, solving the first two equations with

yuy, for i and ai using the standard Newton technique (e.f. page 90

of reference 1201), and then substituting these values Into the third

equation of (13). Once two values yi and y, have beon found such that

the absolute difference ly- I iI is sufficiently small and such that

H(Yi1ui§Q ) ) 0 > HCYj,•uao). where H(yjy,a) designates the left side

of •ae third equation of (13), the required estimates follow by linear

interpolation. The smallest sample observation, x1 , is of course an

upper bound on y and may thus be employed as a first approximation y1

in the iteration procedure.

In the event that the third estimating equation of (13) is not

satisfied for any value of y in the permissible interval y . x1 then

the modified estimatoiof Section 5 are to be recommended.

Harter and Moore encountered the related problem in connection

with samples that arn singly and doubly censored. With r observations
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censored on the left so that xr is an upper bound on 1, their recoi-

mendation is that an additional observation be censored on the left so

that x l then becomes a new upper bound on y.

S. MODIFIED MAXIMUM LIKELIHOOD ESTIMATION

Alternate estimators (*4LE) which have proven most satisfactory

in numerous applications, can be obtained by simultaneously solving the

estimating equations

alnL O,~ an_._L 0, and E[F(xr)] • P(xr),
a r r

where Xr is the rth order statistic in a sample of size N. Only those

failures which occur prior to the time at which the first stage of

censoring takes place, provide observed values for order statistics,

and thus the maximum value of r is limited. In most applications, we

might choose to set r-l, but a larger value might be preferred if there

is reason to suspect contamination of the sample data in the vicinity

of the terminus. Applicable estimating equations accordingly consist

of the first two equations of (13) plus a third equation involving xr

as derived below. Since

Sx
F(xr.) J rf(x)dx, and since E[F(x)] Tfr;, (14)

Y

it follows 'that our third estimating equation becomes

Y a xr .(15)

where C r is the standard normal deviate for which

I f re-z /2 dz r ;•S| 22 r (16) 8
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The modified estimatorsaccordingly aru found by simultaneously

solving the set of equations consisting of the first two equations of

(13) plus eqLution (IS). The same procedure employed in Section 4 to

calculate the LMLE is also applicable here. On determining Y1 and yj

such that IYi-j is sufficiently small and such that G(Yiuioi) >

T G(y ju o), where G(y,ua) - y + e , we interpolate for the

required estimates Just as we did in Se,.tion 4.

6. SOME SPECIAL CASES

Various special cases in which at least one of the parameters is

known, are of interest in certain applications. The following are

considered to be deserving of mention at this time.

MLE with y known.

With y known, there is no longer any distinction to be made

between a local maximum and a global maximum. The applicable estimating

equations in this case are the first two equations of (13), and they may

be solved iteratively for the required estimates u and a as outlined

in Section 4. As an alternate technique, we might make the transformation

Yi = ln(xi' y) and then proceed as described in reference [4] for a

progressively censored sample from a normal distribution. Gajjar and

Khatri [7] previously considered this special case.

LMLE with a known.

It often happens that the shape parameter o and thus *3 are known,

leaving only v and y to be estimated from the sample data. In this case,

the applicable estimating equations consist of the first and third

equations of (13)..
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ltLE with a known.

In this case, the applicable estimating equations consist of the

first equation of (13) plus equation (15).

7. ESTIMATE VARIANCES AND COVARIANCES
SA

The asymptotic variance-covariance matrix of the estimators U, o,

wad y is obtained by inverting the information matrix in which elements

are negatives of expected values of the second partial derivatives of

the logarithm of the likelihood function. For sufficiently large

samples, these expected values can be approximated by substituting the

estimates obtained from a given sample directly into the partial deri-

vatives which are given below.

a2 InL -n 1 k r Z (Z
2 2 2-2 1

22

a n" n L[1kn 1n(xi 2Y)''l+°2 k r Z [a-(Z'A
a 2 1 (xl ' Y]2 1k (T Y)l27

S - 1 (17)
a2 In L 32 In L I I 1 r i L (k
32a in L * y 2. 1x --Y 12 (T Y)'

a 2 In L l2 In L 2 n [In(x i'Y).u1] . I k r Z [l.+(Z.-•.)]
- k rj--(Xi(y) -77 1

a2 In L 2 In L 2 ni1 kZiv)]..
3u a a a-- lI~,y-j -- ErZ[ Z A

Since the estimators V, a and y are local rather than global

maximum likelihood estimators, the applicability of the variance-covariance
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matrix obtained here, might be open to question. However, a Monte

Carlo study by Nicholas Norgaard (16] indicates that the approximate

asymptotic variances and covariances obtained here should be considered

satisfactory when n > 50, although they might be misleading as measures

of sampling error for small samples. Norgaard's results are consistent

with results of an earlier Monte Carlo study by Harter and Moore (loc.

cit.) in connection with singly and doubly censored %amples, It is

also to be noted that Norgaard's study indicates that variances and

covarlances of the MMLE are approximately equal to corresponding

measures of the MLE. This is an area of investigation that is continuing

to receive attention both from Norgaard and the writer.

8. AN ILLUSTRATIVE EXAMIPLE

A simulated life test was conducted on 100 randomly selected

units of a certain electronic device having a log-normal life span

with U a 5.0000, a a 0.3000 and y - 100. Sixty-five complete life

spans were observed, while thirty-five observations were censored in

three separate stages. Following are the life spans in hours to two

places of decimal, for the 65 units which failed during the test.

167.91 200.88 219.14 232.91 246.61 262.59 287.71
175.83 201.76 220.59 235.66 247.17 263.94 288.81
185.88 205.31 222.00 236.75 249.14 266.12 291.30
188.14 206.98 222.82 237.40 249.73 266.62 295.18
189.08 210.78 224.33 239.05 250.09 267.01 297.38

191.96 212.49 225.60 240.22 252.89 270.64
195.61 213.24 226.50 240.64 253.57 271.76
197.01 215.25 227.24 242.17 255.57 275.48
198.76 216.75 227.24 243.03 260.60 279.62
199.05 218.78 231.42 244.56 261.99 285.19
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When the tenth failure occured at time T1 * 199.05, twelve units

selected at random from the survivors were censored (i.e. removed from

the test). When the forty-fifth failure occured at time T2 s 250.09,

ten additional randomly selected survivors were reved, and the test

was terminated at time T3 a 297.38 with 13 survivors. In summarizing

these data, we record: N s 100, n a 65, 13rj * 35, ;t a 167.91, T1 -

199.05, r 1 12. T2 a 230.09, r 2 , 10, T3 -297.38, r 3 13, Elx 1 •

1S,327.43, j* * 235.8066.
;65

Estimates were calculated as described in Sectiors4, S and 6

and are summarized in the following table.

In general, the estimates obtained here compare favorably with

corresponding population parameters.
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